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Abstract

The recent popularity of the social media networks including forums, blogs, and
micro-blogging networks changed the way patients share their health experiences and
treatment options. Such forums offer valuable, unsolicited, uncensored information on
drug safety and side effects directly from patients. However, it is very challenging to
extract useful information from such forums due to several factors such as grammati-
cal and spelling errors, colloquial language, and post length limitation. Furthermore,
due to the sensitivity of the domain for adverse drug reactions (ADR) detection, it is
more critical to identify correct ADRs (i.e., achieve higher classification precision) than
identifying non-precise ones.

The aims of this thesis are: (i) to develop a new approach for ADR classification in
twitter posts called Semantic Vector(SemVec); (ii) to explore natural language process-
ing (NLP) approaches for generating domain features from text, and utilizing them for
ADRs detection; and (iii) to improve convolution neural network (CNN) ADR classifi-
cation precision by incorporating domain features.

This thesis proposes a dynamic and pluggable model, named SemVec, for represent-
ing words as a vector of both domain and morphological features. Based on the problem
domain, domain features can be added or removed to generate an enriched word rep-
resentation with domain knowledge. SemVec represents each post as a matrix of word
vectors, which is fed into CNN. SemVec is scalable, can be applied to other domains
by employing relevant natural language processing methods and domain lexicons. The
proposed method was evaluated on Twitter (ADR) dataset. Results show that SemVec
improves the precision of ADR detection by 13.43% over other state-of-the-art deep
learning methods with a comparable recall score.
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Chapter 1

Introduction

This chapter introduces the thesis. It describes the problem statement, motivations,
goal, objectives, and organization of the thesis.

1.1 Introduction

In the United States, the fourth leading cause of death is adverse drug reactions(ADRs)
ahead of diabetes, HIV, and car accidents. Each year, many injuries caused by ADRs[37].
Although new drugs should pass clinical tests in order to be marketed, many ADRs are
discovered in post-approval phase as they happen to certain groups of people in certain
conditions and they may take a long time to expose. To record ADRs, the US food
and drug administration (FDA) has developed a database for collecting ADRs which
monitors drugs safety during drug post-approval phase. Although Spontaneous ADR
reporting systems can capture a set of drug ADRs, it has a set of recognized limita-
tion, such as difficulty to determine ADR-drug relationship and it only captures a small
fraction of ADRs.

The recent development of the social media networks including forums, blogs, and
microblogging networks change the way we gather diseases and treatment options. It
is now much easier for a patient to share his health experiences with others. In a
recent survey, The Pew Research center found that 59% of all adult Internet users
have used the Internet for seeking information about any of 15 health topics such as
disease or treatment. Furthermore, 23% of social network users have followed their
friends’ personal health experiences[2]. Such social media posts offer valuable, unso-
licited, uncensored information on drug safety and side effects directly from patients.
So, several researchers have proposed different methods for extracting ADRs from social
media [66, 41, 28, 8, 81, 33, 54, 62].

ADRs extraction research can be classified into three categories:1) text mining based
methods, which utilize text mining techniques for extracting ADRs such as [77, 31, 43],
2) machine learning based methods, which use machine learning algorithms for extract-
ing ADRs such as [49, 73, 62, 54, 33, 81], 3) deep learning based methods which utilize
deep learning methods for extracting ADRs such as [28, 41, 8]. These works show that
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convolution neural network(CNN) can improve ADRs extraction performance. Also,
it shows that domain features can be also effective in extracting ADRs, but will the
combination of domain features and CNN improve ADRs classification performance?

This thesis tackles this question by proposing a new approach for ADRs detection in
Twitter posts that combines domain features and CNN. In this approach, each word in a
tweet is represented as a row vector of discrete features. These features include domain-
specific and morphological features, employing those with domain semantic relevance
and common meaningful use. This approach is dynamic, which means domain features
are changeable, i.e. can be added or removed based on the problem domain. After
representing each word as a row vector, each tweet is represented as a matrix of word
vectors that is fed into CNN. In addition, we propose a new CNN network architecture
with a single convolution layer, a single max pooling layer, two fully connected layers
and finally a sigmoid activation function.

In the evaluation, our work is evaluated on Twitter ADR dataset from Arizona
State University. Also, our work is compared with both: a method that uses features
engineering and methods that use deep learning and CNN for ADR extraction. The
results show that our approach better ADR classification precision with comparable
recall compared to other methods.

1.2 Problem Statement

Adverse Event Reporting System (AERS) like systems are a major source of ADR infor-
mation. These systems monitor drugs safety during the post-approval phase. Moreover,
it relies on collecting ADRs from pharmaceutical companies, health-care professionals,
and consumers spontaneous reports [24].

In some incidents, ADRs spontaneous reporting systems failed in protecting the
public from drugs’ risks as effectively as it might. The 2004 withdrawal of Rofecoxib
(Vioxx) because of an increased risk of serious cardiovascular side effects was a key
incident in raising such concerns[46].

Lately, a new type of social networks and forums emerged. Twitter, Ask a Pa-
tient, DailyStrength, PatientsLikeMe, and Yahoo Health and Wellness are such type
of forums which provide patients the ability to report drug side-effects and share their
health experiences and medications. Although the accuracy of this information may
be questionable, such forums offer valuable information on drug safety and side effects
directly from patients. However, it is challenging to extract ADRs from such forums
due to several factors such as spelling and grammatical errors, colloquial language, dis-
tinguish real experience from news post, etc. This process requires deep statistical and
linguistic methods to filter and extract useful findings [25].

This thesis aims to develop a new approach for ADR classification in twitter posts
called Semantic Vector(SemVec). The approach uses domain-specific semantic features
to improve convolution neural network(CNN) precision. SemVec can utilize different
types of semantic features such as polarity, sentiment, subjectivity and domain-specific
features. SemVec experiment results show that domain features have a clear impact on
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improving system classification precision and can achieve high scores even in unbalanced
datasets.

1.3 Motivation

1.3.1 Why Social Media Posts ADR Detection is important

Spontaneous ADR reporting systems have a set of recognized limitations, such as it
only captures a small fraction of adverse events [46]. It is also difficult to determine if
an ADR is related to a particular drug, as the reports may contain other factors such as
other drug exposures[60]. To overcome these limitations, social media and health forum
posts can be used to extract drug side-effects from patient posts. Such forums offer
valuable, unsolicited, uncensored information on drug safety and side effects directly
from patients.

1.3.2 Challenges of ADR Detection in Tweets

Twitter is one of the largest social media networks that has 330 millions monthly active
users and 500 millions of daily tweets 1. Unlike other social media sites, such as Face-
book, Twitter allow developers to access tweets of all users or filter them by subject-for
example drug name- which can be very useful for research. However, extracting ADRs
from Twitter based data sources present various NLP challenges. Leaman et al. [38]
have shown that systems exposed to social media posts frequently under perform others
that do not expose to social media posts due to misspellings, use of idiomatic, ambigu-
ous and sarcastic expressions and presence of novel/creative phrases. Twitter posts,
on the other hand, presents additional challenges related to tweet length constraints.
These challenges are as follows [66]:

• Users express their own views about specific medications in their posts. It is hard
to identify such posts unless the user explicitly states that this is his own view or
someone else experience.

• Challenges related to the presence of normal misspellings particularly in drug
names (e.g., ‘Seroquil’, ‘Numbb’, ‘Effexer’, ‘Bfore’). Sometimes these errors can-
not be detected which may lead to incorrect posts classification.

• Twitter post length constraint and disconnected sentences. These limitations
may lead to posts missing some critical information which may cause inaccurate
classification results.

• Data imbalance and noise. In this thesis, the used datasets contain far more
negative ADR instances than positive ADR instances. In certain cases, classifier
performance could be significantly affected by Data imbalance [29].

1https://www.omnicoreagency.com/twitter-statistics/ accessed 21/2/2018
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• Users use ambiguous/non-standard terms to express ADRs (e.g.: ‘look like a zom-
bie’, ‘ton of weight’). These non-standard terms are hard to identify and requires
special dictionaries.

• ADR detection is more critical than other classification tasks. In such critical
tasks, precision is more important than recall.

• Some tweets are news or re-tweet from someone else post. In these cases, the
classifier should verify that this post describes a user experience and not a re-
tweet or news.

1.3.3 Why Domain Specific Features

Feature engineering is the process of creating or extracting features using domain knowl-
edge to generate a representation that enables classification [19]. For example, in the
text classification domain, all distinct terms present in a text corpus can be considered
as features. Feature engineering process is often guided by domain knowledge [19]. In
the medical domain, for example, terms related to diseases such as ADR, symptoms,
and medications are manually defined by experts. The use of domain-specific features
will generate a vector representation that includes the domain semantic which will guide
the classifier learning process by focusing on only important domain-related features.

1.3.4 Why Convolution Neural Networks

Convolution Neural Networks (CNN)s are widely used in image classification and com-
puter vision. CNN is composed of a set of layers with filters that convolve over to
local features [40]. CNNs are directly responsible for the major breakthroughs in image
classification. Today CNNs are the core of several computer vision systems such as
self-driving cars and automated photo tagging.

Recently, Researchers have shown that CNN can be applied effectively to different
NLP tasks and can achieve excellent results. For example Yih et al. have applied CNN
in semantic parsing [78], Shen et al. have applied CNN in search query retrieval [68]
and other traditional NLP tasks [17].Moreover, CNN is applied to text classification,
relation extraction, and sentiment analysis. Kim[35] have done a series of experiments
with CNNs for sentence-level classification tasks. The model was trained using pre-
trained word vectors.

1.4 Research Questions

CNN has achieved promising results in various NLP task. Therefore, using CNN in the
task of ADRs extraction or identification from tweets or free social text may improve
ADRs extraction performance compared to using other classification algorithms like
support vector machine(SVM). This research is trying to answer the following questions:
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• What is the effect of using domain-specific and morphological features in CNN on
model performance(including precision, recall, accuracy)?

• Does domain-specific features require a special CNN network model?

• What is the importance of each domain-specific feature?

• How to choose domain-specific features?

1.5 Research Methodology

In this study, we follow a scientific approach by conducting a research to observe the
influence of domain specific features on ADR detection precision in Twitter posts. This
thesis aims to construct a concise vector representation of words and use it as input
to a convolution neural network. SemVec uses a set of domain specific and non do-
main specific features to represent each word in the post. In contrast to word2vec [47]
which represents each word with a long vector from 50 to 300 embedding dimension,
SemVec can represent a word with a short vector of 12 dimensions and also achieves
high performance scores. Our research objectives are:

• To conduct a literature review to identify research gaps and identify research
limitations.

• To collect relevant data sources that can be used in our experiment.

• To collect tweets that are medically related to use them in building word embed-
ding model using pre-training.

• Developing new word representation layer for CNN using semantic features. This
new word representation consists of a set of domain specific features. The used
features are from different categories including polarity features, domain-specific
features and syntactic features.

• Developing new CNN model for text classification.

• In order to examine the performance of the proposed approach, we compare
classification metrics of the positive class (instances contain ADRs) with Sarker
multi-corpus training method [66], Huynh et al. CNN method [28], Huynh et
al. RCNN method [28],Huynh et al. CRNN method [28],Huynh et al. CNNA
method [28],Term-matching based on an ADR lexicon(TM) [58] implemented
by [28],Maximum-Entropy classifier with n-grams and TFIDF weightings(ME-
TFIDF) [81], Maximum-Entropy classifier with mean word embeddings(ME-WE) [81]
implemented by [28].

• To analyze experiment results in order to compare it with other approaches and
find strength and weakness in our approach.
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1.6 Hypothesis

We hypothesized that using domain-specific features and CNN in classifying Twitter
posts will improve classification precision based on our evaluation methodology.

1.7 Thesis Objective

This thesis aims are:

• To develop a new approach for ADR classification in twitter posts.

• To explore natural language processing (NLP) approaches for generating domain
features from text, and utilizing them for ADRs detection.

• To improve CNN ADR classification performance by incorporating domain and
morphological features.

1.8 Thesis Organization

This thesis is structured as follows:

• Chapter 2: Background. Provides a general background of the concepts needed
to understand the rest of the thesis.

• Chapter 3: Literature review. Reviews related works in tweets ADR classifi-
cation.

• Chapter 4: Proposed method. Proposes a new method for tweets classification
based on CNN and feature generation which improves tweets ADR classification
accuracy.

• Chapter 5: Evaluation and results. Examines the performance of our ap-
proach, and compares it with the state of the art methods.

• Chapter 6: Conclusion and Future Work. Represents conclusions of thesis
and future work.
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Chapter 2

Background

This chapter provides a general background of the concepts needed to understand the
rest of the thesis. It covers basic concepts of deep learning and more specifically CNN.

2.1 Machine Learning

Recently, machine learning has been widely used in multiple fields, including computer
science, medicine, sports, etc.. So many applications and services have been using
machine learning technology to solve problems. For example, email services use machine
learning to filter spam messages, classify emails into important or not and recommend
ads. Another machine learning technology that is widely used in social media sites is
face recognition. Face recognition technology is capable of identifying persons in a given
digital photograph. Today, Facebook uses face recognition to automatically suggest tags
for friends in images [20].

Machine learning can be defined as ”a mechanism for pattern search and building
intelligence into a machine to be able to learn, implying that it will be able to do
better in the future from its own experience” [20]. So machine learning programs utilize
example data or past experience to optimize model performance. In machine learning,
the model is defined based on some parameters, then this computer program is executed
to optimize model parameters using the training data or past experience(the learning
process). Machine learning models can be classified into predictive, descriptive or both.
Predictive models make future predictions while descriptive ones gain knowledge from
data [9]. As shown in figure 2.1, machine learning algorithms can be classified into five
subfields. The following subsections describe each subfield.

2.1.1 Supervised learning

Supervised learning is the most common form of machine learning. In supervised learn-
ing, labeled training data is used. The algorithm produces a model from training data
that can be used to predict unseen data labels [39]. During training, the goal of machine
learning algorithms is to minimize the error between output scores and actual scores. To
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Figure 2.1: Machine learning subfields [20]

calculate error, an objective function is used to measure the distance between predicted
scores and actual scores. In order to minimize error, neural nets adjust its internal
parameters (also known as weights). Weights are real numbers that define the function
which maps inputs to outputs. Typically, deep learning systems contain millions of
weights along with millions of labeled instances [39].

To effectively optimize the weight vector, a gradient vector is computed. Using a
gradient vector, the learning algorithm can detect decreases or increases in error amount
when changing weights which helps in optimizing weight vector values. The most used
gradient optimization algorithm is called stochastic gradient descent (SGD) [39].

2.1.1.1 Classification

Classification is the process of classifying unseen data to a set of predefined classes. A
classification algorithm uses a set of labeled training data to build a classification model.
Then this classification model is used to predict unseen instances classes [44]. Several
applications use classification to solve diverse problems including mail classification
into spam or non-spam and cells classification into malignant or benign [70]. Table 2.1
shows an example dataset used for binary classifying customers who will buy computer
and who will not. The attribute set includes properties of each customer such as his
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name, age, income and student or not. These attribute set contains both discrete
and continuous features. However, in classification problems the class label must be a
discrete attribute [70].

Name Age Income Student Buys computer

Adam 30 high no no
Ahmad 35 high no yes

Ali 42 medium no yes
Khaled 38 low yes yes

Mohamad 36 low yes yes
Radi 30 medium no no

Yousef 22 low yes yes
John 42 medium yes yes
Khalil 25 medium yes yes
Ahmad 33 medium no yes
Feras 33 high yes yes
Fadi 42 medium no no

Table 2.1: Example of datasets

2.1.2 Unsupervised learning

In some machine learning problems, we have input data but we do not have specific
output variables(examples are unlabeled). The main goal for unsupervised learning
is to find hidden patterns and modeling underlying structure in the data. In such
problems, there are no correct answers and there is no teacher. Hence, the accuracy of
the resulting structure cannot be evaluated[20, 14].

2.1.3 Deep learning

Deep learning is a subfield of machine learning that unifies machine learning with AI.
Deep learning works on large amounts of data which can be considered as an advance-
ment to artificial neural networks [20].In deep learning, The core building block of a
standard neural network is called neurons. Neurons can be seen as processors producing
a sequence of activation. Neurons can be activated in different ways such as weighted
connections from previously active neurons or through sensing the environment. Typ-
ically, connected neurons have weights that neural network adjusts during training to
optimize learning using Backpropagation algorithm as described in section 2.2. Based
on problem complexity, the desired behavior may require a series of deep layers and
long stages of training [67].

Models with few layers(Shallow models) have been around since 1960. Due to its
computation costs, Deep neural networks with multiple layers were difficult to imple-
ment in practice until early 2000 [67]. The recent drop in hardware prices, increase in
processing power, and the advancement of machine learning algorithms are the main
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reasons for the booming in deep learning [22].
Deep networks add more layers and more neurons to each layer to represent complex

functionality. In classification problems, deep learning algorithms amplify input object
discriminative features in higher layers and dismiss irrelevant features. For example, in
image classification tasks, each layer in a deep neural network detects a specific feature.
The first layer detects image edges, motifs are detected in the second layer. Furthermore,
motifs are assembled into larger parts in the third layer which matches familiar object
parts. Finally, subsequent layers combine parts from previous layers which allow the
network to detect objects [39].

The key feature of deep learning is the ability of each layer to detect features au-
tomatically without human intervention. Deep learning has achieved state of the art
results in image recognition, speech recognition as well as other machine learning sub-
fields [39]. Interestingly, deep learning has achieved promising results in various NLP
tasks such as sentiment analysis and machine translation [39].

2.1.4 Semi-supervised learning

Semi-supervised learning is a subfield of machine learning that uses both large amount
of unlabeled data and a small amount of labeled data to create a better model. Semi-
supervised learning can reduce the cost associated with labeling a full training set, as
labeled data often requires a skilled human agent(e.g. to label tweet for ADR and
no-ADR). Instead, it uses unlabeled data which is relatively inexpensive to acquire [20].

2.1.5 Reinforcement learning

Reinforcement learning is a subfield of machine learning where a software agent tries to
solve a problem by maximizing rewards for its actions and minimizing penalties. After
a set of runs, the agent should learn the best sequence of actions that maximize the
reward [20].

2.2 Backpropagation

Backpropagation, short for ”backward propagation of errors”, is an algorithm to adjust
neural network weights to minimize error by calculating each neuron error contribution
after processing a batch of data networks using gradient descent. The calculation of the
gradient proceeds backward through the network, as the final layer gradient of weights
is being calculated first then proceed through layers until the first layer gradient is
calculated at last. The backward flow of the error allows more efficient computation
of the gradient compared to calculating each layer gradient separately [39]. Because
backpropagation is considered an efficient algorithm, it is widely used to train deep
neural networks for image recognition, speech recognition, and text classification [39].
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2.3 Word Embedding

The first building block for any NLP task is the word or sentence representation. Re-
cently, a set of algorithms were introduced that provide representations of words in
a vector space model by grouping similar words. One of those popular algorithms is
word2vec introduced by Mikolov et al.[47]. Word2vec is a shallow, two-layer neural net-
work pre-trained on large amounts of unstructured text data to produce a high-quality
vector, typically of several hundred dimensions, representations of words. One inter-
esting feature of word2vec it that the produced representation of word encodes many
linguistic regularities and patterns. Surprisingly, using word2vec we can represent many
of these relations as equations. For example, the result of this equation:

vec(\Madrid”)− vec(\Spain”) + vec(\France”)

is closer to vec(“Paris”) than to any other word vector [47]. Word2vec is widely used
in deep learning text classification and relation extraction tasks as shown in chapter 3.

2.4 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNN) is a type of neural networks that is able to
process complex forms of data such as multiple arrays. Images and audio; signals
and sequences; and video are all samples of data represented in the form of multiple
arrays [39].

Figure 2.2 shows the general CNN architecture for text classification. CNN typically
is composed of series of stages. The first stages are usually composed of convolution and
pooling layers which numbers may vary based on the method. The later stages consist
of a set of fully connected layers [39, 22].

Inside each convolutional layer, units are organized in feature maps which are con-
nected to previous layers through a set of filters(weights). The result of this convolution
is then passed through a rectified linear unit(ReLU) layer(non-linearity) -other activa-
tion functions may be used such as softmax-. As shown in Figure 2.2, each sentence
is represented as a matrix with word representations-such as word2vec- as rows. Each
sentence matrix is then fed into a convolution layer which applies a filter to it and
generates a feature map. Feature maps then fed into max pooling layer which extracts
the most useful features and then fed it into fully connected layers which classify this
sentence.

Recently, several researchers applied CNNs to different NLP tasks including text
classification, relation extraction, and sentiment analysis. Kim[35] has done a series of
experiments with CNNs for sentence-level classification tasks. The model was trained
on top of pre-trained word vectors.

2.4.1 Types of layers

CNN is composed of a set of different layers in a hierarchy. Generally, it contains a
convolution layer followed by pooling layers. The following subsections describe those
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Figure 2.2: CNN architecture for text classification [79]

Figure 2.3: convolution layer(Kernels=filters) [22]

layer and how they are used in text classification.

2.4.2 Convolution Layer

The convolution layer is the core building block of a CNN. As shown in figure 2.3, it
applies a convolution operation to the input and passing the output of this operation
to the next layer. In Kim model [35] the convolution layer uses three region sizes: 3,5
and 7 words each one of them has 2 filters. Each filter has a width of the word vector
dimension. So this will produce 3-gram if the filter size is 3 or 5-gram if the filter
size is 5, etc... Filters apply convolution operation on the sentence matrix in order to
generate (variable-length) feature maps. A feature ci is generated from a window of
words Xi:i+h−1 by

ci = f(w · xi:i+h−1 + b)

In this equation, f is rectify linear unit (ReLu) function and b ∈ R is bias term.
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2.4.3 Pooling Layer

This layer is usually used to reduce both feature maps and network parameters dimen-
sions. The most commonly used strategies are max pooling and average pooling. After
using a max pooling layer of 2*2 size and stride of 2, feature maps of size 16*16 is
reduced to 8*8 [22]. Figure 2.4 shows the operation of a max pooling layer.

Figure 2.4: max pooling layer [22]

2.4.4 Fully-connected layers

Fully-connected layers perform the same functionality of tradition neural network. It
follows the last convolution and pooling layer and allows the network to feed forward a
vector into another vector of different length or into different categories [39].

2.4.5 Softmax Layer

This is usually the final layer in a CNN architecture, a softmax receives the feature
vector from the previous layer and uses it to perform binary classification. The softmax
equation is:

Li = −log

(
eyi∑k
k=1 e

yk

)
In this equation, yi represents the actual correct class.
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Chapter 3

Literature Review

This chapter reviews the most commonly used text mining techniques in social media
ADR extraction. The work done on ADRs can be classified into three main categories
as follows:

3.1 Text Mining Based Methods

Due to the public nature of Twitter posts, multiple researchers have conducted studies
on how to extract ADEs from tweets. Jiang and Zheng[31] have developed a compu-
tational approach for extracting ADRs from Twitter data. In order to automatically
extract ADRs from twitter posts, the authors have developed a data processing pipeline
to extract ADRs from Twitter posts. The data pipeline consists of three main steps:
collecting and pre-processing tweets, using machine learning to classify personal experi-
ence tweets, Detecting ADRs from tweet text using the MetaMap software. In order to
classify tweets which contains personal experience, the authors use a machine learning
classifier. Natural language Toolkit(NLTK)[11] was used to extract sentiment and pro-
nouns features which were used later in machine learning methods. The authors tested
three different ML methods: Naive Bayes, Support Vector Machine, and Maximum En-
tropy which demonstrated the best performance. Although Twitter can be considered
as a valuable ADRs source, The 140 characters limitation on user tweets limits the
amount of information that can be posted and afterward extracted from each tweet.

Leaman et al.[38] have proposed a more sophisticated approach for mining the re-
lationships between ADRs reported by patients and drugs. The proposed method used
Java sentence breaker to split user comments into sentences and then tagged for part-
of-speech using Hepple tagger[26]. After handling spelling errors, the authors measure
string similarity to compare the individual tokens using Jaro-Winkler [76]. Finally, a
normalized score was calculated by summing the similarities of the individual tokens
for both original tokens and stemmed ones, and the higher of the two scores is the final
score. To evaluate their system the authors manually annotate a set of user comments
posted on DailyStrength [38].

A different approach for extracting ADRs from online patient forums was proposed
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Figure 3.1: AZDrugMiner Framework [43]

by Liu and Chen[43]. The analytical framework (AZDrugMiner) is composed of a
collection of machine learning methods to extract ADRs. As shown in Figure 3.1, AZ-
DrugMiner contains different components. To collect the data a crawler was developed
to download medical posts from patient forums. In data pre-processing, step AZDrug-
Miner cleans text and detect sentence boundary. To split each post into sentences, the
authors used an open source OpenNLP tool[4]. After pre-processing, medical entity
extraction step starts. In this step, Metamap[3] Java API maps post’s text to UMLS[5].

In order to detect whether an ADR is associated with a drug in a sentence, an entity
relation extraction method is needed. To help increase the precision of the extracted re-
lation, a kernel-based machine learning method was used to extract ADRs from patient
forums[42]. To reduce noise and duplication, the authors used a post source classifi-
cation to filter whether an ADR reports is based on reporter experiences or not. The
authors claim that no previous patient social media research addresses this issue and to
solve it they develop a machine learning classifier to classify reports based on patient
experience[42].

To evaluate AZDrugMiner, the authors used a manually annotated dataset which
shows promising performance. To further improve AZDrugMiner system other kernel
functions such as SubTree Kernel and Standard tree kernel could be used. Moreover, to
improve relation detection performance multiple kernel function can be combined[42].

Sarker et al.[66] have proposed an approach for classifying Twitter posts that utilizes
multi-corpus to improve classification performance. The authors have used three data
sets two of them are annotated posts from social media while the third one contains
annotated clinical report sentences. The proposed method generates a feature vector
from a large set of semantic features (i.e: sentiment, polarity, and topic) from short text
nuggets.

3.2 Machine Learning Based Methods

Nikfarjam et al.[49] have proposed a new machine learning based method for extracting
ADRs from user’s social media named ADRMine. The authors collected a set of drug
related user posts from DailyStrength and Twitter sites. After data collection, user posts
were annotated by two expert annotators. After data collection, an exhaustive list of
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Figure 3.2: Text Processing Module [62]

ADRs and corresponding UMLS IDs were compiled. In order to extract ADRs from
social media posts, CRFsuite[51] (a CRF[72] classifier implementation by Okazaki) was
used. The CRF classifier was trained on a set of annotated ADR posts. By achieving
an F-score of 0.82, the authors claim that ADRMine results outperform several baseline
systems in extracting ADRs[49].

A most recent study conducted by Wang[73] extends Nikfarjam et al.[49] work by us-
ing different word representations(K-means clusters and Brown clusters) [16][71]. Word
clusters were generated using a set of unlabeled tweets (some contains ADRs). Word
clusters were constructed using Brown clustering tools [13] and Stanford GloVe tool [1]
as described in[71]. Study results show that the proposed system significantly outper-
forms the other participating system in this study.

A different approach for extracting ADRs from posts in online healthcare forums was
proposed by Sampathkumar et al.[62]. The proposed method consists of the following
three modules:

• Information Retrieval Module[62]: in order to collect data, the authors built a
crawler to extract data Medications and Steadyhealth websites.

• Text Processing Module[62]: in this module, a data processing pipeline was built
from a collection of Natural Language Processing (NLP) tools as shown in Figure
3.2.

• Information Extraction Module[62]: used to identify entities and extract possible
relationships between them. It consists of two sub-modules: Named Entity Recog-
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Figure 3.3: Two steps drug comments classification process[54]

nition (NER) module and Relationship Extraction (RE) sub-module. To extract a
drug and ADR association the authors used Hidden Markov Model(HMM) which
is a supervised machine learning method.

Patki et al.[54] proposed a novel probabilistic model for drug categorization based
on user comments. As shown in figure 3.3, the proposed approach is composed of two
steps: first, classify whether a comment is an ADR or not, and then check whether all
drug comments shows a red flag or not. In the binary classification step, the authors
used a manually annotated set of user comments to train classifiers. Two machine
learning algorithms were used: Multinomial Naive Bayes (MNB) and Support Vector
Machines (SVM). Finally, in order to classify drugs into a normal or black box, the
authors developed a probabilistic model based on the hypothesis that a black box drug
should have more ADRs than a normal one. Although the results of classifying single
comments into ADRs and non-ADRs are promising, the overall classification of drugs
is marginal.

Jonnagaddal et al.[33] have proposed a binary classifier using linear SVM to au-
tomatically classify ADR-assertive Twitter posts. The proposed method pre-processes
each tweet to remove unnecessary characters such as hashtags, username, etc.. After
pre-processing, the system extracts various features including syntactic, lexicon, polar-
ity and topic modeling based features. Moreover, the system extracts a set of lexicon
features generated using pattern matching.

Zhang and Nie[81] have proposed a new approach for classifying tweets which pro-
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Figure 3.4: Kim’s model architecture with two channels for an example sentence. [35]

duces a weighted average of four classifiers: concept-matching classier; a maximum
entropy (ME) classier with TFIDF weighting scheme; an ME classier based with naive
Bayes (NB) log-count ratios as feature values; and an ME classier with word embedding
features. The final classifier is an ensemble of the previously mentioned classifiers and
the overall score is defined as the weighted mean of output from these classifiers.

3.3 Deep Learning-Based Methods

Deep learning has recently shown interesting results in various NLP tasks. In this
section, we show a review of work done in this area related to our problem.

3.3.1 Convolution Neural Networks (CNN)

Convolution Neural Networks (CNN)s are extensively used in computer vision and image
classification. CNNs are directly responsible for the major breakthroughs in image
classification.

Recently, several researchers applied CNNs to different NLP tasks including text
classification, relation extraction, and sentiment analysis. Kim[35] has done a series of
experiments with CNNs for sentence-level classification tasks. The model was trained
on top of pre-trained word vectors.

Kim suggested model is shown in figure 3.4. In this model, each word is represented
by k-dimensional word vector obtained from word2vec tool 1. A sentence of length n
words in this model is represented as a matrix Rn∗k-k stands for word representation
dimension- of word vectors. In order to produce a new feature from sentence matrices,
a convolution operation with multiple filter widths is applied to a window of h (h
represents filter size) words to produce a new feature. For example, a feature ci is
generated from a window of words Xi:i+h−1 by

ci = f(w · xi:i+h−1 + b)

In this equation, f is a nonlinear such as the hyperbolic tangent and b ∈ R is a bias
term. After applying this filter to each possible set of word window a feature map is

1https://github.com/dav/word2vec accessed 21/2/2018
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produced[35]
ci = [c1, c2, ..., cn−h+1]

After getting the feature maps a max pooling over time is applied in order to capture
the feature with the highest value - the most important feature - for each feature map.
The final results of the authors work show that a simple CNN with one layer convolution
performs very well. Moreover, the author found that unsupervised pre-trained word
vectors are a corner block component in deep learning for NLP[35].

Johnson and Zhang[32] have proposed a CNN model without the need for pre-trained
word vectors. The authors were able to directly apply CNN to high dimensional text
data instead of low dimensional word vectors like word2vec or GloVe. In this paper, the
authors have applied convolutions to one-hot vectors. Moreover, in order to reduce the
parameters which the network has to learn, the authors have proposed a space-efficient
input data representation (bag-of-words-like).

Dos Santos and Gatti[63] have proposed a new approach for sentiment analysis of
Twitter messages using CNNs. In order to perform sentiment analysis, the proposed
method exploits character to sentence-level information. The neural network takes a
sentence as input. By passing this sentence word representation matrix through a
sequence of layers the system is able to extract more complex features. Moreover, this
system is able to extract features from both character-level and sentence level. Moreover,
it consists of two convolutional layers to handle variable size words and sentences.

Sahu et al.[61] proposed a new approach for relation extraction using CNNs and
feature generation. The proposed model takes a sentence as an input and outputs all
possible relation types as probability vector. It is based on Kim[35] model architecture.
The authors used generated features in the first layer in addition to word embedding
and used multiple filters in all possible continuous n-grams in the sentence.

Huynh et al.[28] have proposed two new neural network models, Convolutional Re-
current Neural Network (CRNN) by concatenating recurrent neural network to convo-
lution neural network and Convolutional Neural Network with Attention (CNNA) by
adding attention weights into CNN.

Lee et al. [41] have proposed a semi-supervised CNN model for tweets classification
into ADR and non-ADR. The proposed model uses several semi-supervised CNN models
built from different types of unlabeled data. In the second phase, CNN is trained with
annotated ADE data. The output layer uses a linear classifier that can classify if a
tweet contains an ADR or not.

Sulieman et al. [69] have examined if using semantic features and word context
enhances patient portal messages classification performance. The authors have con-
structed a different set of features such as a bag of phrases, a bag of words, word
embeddings, and graph representation. The authors have trained a random forest and
logistic regression classifiers, and CNN with softmax output. Researchers have found
that using semantic features such as word2vec and graph representation improve clas-
sification accuracy of portal messages.

Akhtyamova and Alexandrov [8] have conducted a study which uses CNN with
word2vec to classify ADRs in tweets. The authors have done unsupervised word em-
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beddings learning from different datasets including GoogleNews, Wikipedia, and Diego
lab. Results show that using CNN+GoolgeNews corpus improves ADR F-score.

To reduce training CNN computational costs, Prusa and Khoshgoftaar [57] have
proposed a new character level representations of sentences. In this method, each char-
acter is given an integer value. Each character in the sentence is then replaced by the
corresponding integer value. This sequence of integer values is then replaced by its
equivalent binary representation which creates a vector of 0s and 1s.

3.4 Comparison

ADR detection research can be classified based on vector representation into sentence
level representation and word level representation. Sarker et al. [66] proposed method
generates a feature vector for each sentence from a large set of semantic features (i.e:
sentiment, polarity, and topic) from short text nuggets, whereas our approach generates
a vector of domain features for each word. On the other hand, word level approaches
generate a representation for each word. Wang [73] proposed a method that uses a
word level representation, Brown clusters, and k-means clusters, that are generated
from unlabeled generic and drug-related tweets, while our approach uses word clusters
as a feature in word representation. Other word level methods use CNN for ADR
and text classification. For instance, Johnson and Zhang [32] have proposed a method
which represents words as one-hot vectors. While Johnson and Zhang [32] used one-hot
vectors on the word level, Prusa [57] represented each character in the sentence as a
binary vector of 0s and 1s. However, our approach represents each word as a vector of
domain features. Figure 3.5 shows a diagram of previously described methods.

One of the popular algorithms that are used with CNN for text classification tasks
is word2vec introduced by Mikolov et al.[47]. Word2vec is a shallow, two-layer neural
network pre-trained on large amounts of unstructured text data that produces high-
quality vectors, typically of several hundred dimensions, representations of words. While
word2vec utilizes a word’s local context window, Pennington et al. [55] proposed a
different model that combines the advantages of local context window and global matrix
factorization methods. Both of these models fail to provide a good representation for
rare words, which can be a domain word that can clearly affect performance. While our
model utilizes lexicons and dictionaries to handle rare and domain words.

Many researchers have used word2vec and GloVe to extract ADRs from social me-
dia posts [28, 8]. While Kim [35] was the first to introduce a CNN model that uses
word2vec and GloVe for short text classification. Huynh et al [28] have proposed three
new neural network models CRNN, RCNN and CNNA with word2vec as input layer.
Experiment results show that CNN architecture achieves the best results in ADR classi-
fication. Akhtyamova and Alexandrov [8] trained word2vec on GoogleNews, Wikipedia,
and Diego lab. CNN achieved better results when using word2vec trained on Google-
News. Compared to our approach, word2vec is unsupervised machine learning algorithm
that requires a huge amount of unlabeled data to learn word representation. While our
approach is supervised and so no unlabeled data is required. Further, our approach is
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Figure 3.5: Literature review comparison

dynamic as some features can be added or removed based on the given task and word
representation contains semantic and domain features that word2vec alike systems do
not have.

3.5 Conclusion

The findings from this review reveal a lack of methods that explore the effect of combin-
ing domain, semantic and morphological features with CNN. Indeed, some studies used
domain and semantic features but with SVM and other machine learning algorithms.
Added to this, another study tried to improve CNN performance by using domain fea-
tures and word2vec but for relation extraction task. On the other hand, multiple studies
used CNN with different word representations-i.e. GloVe and word2vec- for ADR clas-
sification but none of them explored the effect of domain features on CNN. Hence,
direction for the research discussed in this thesis is extracted from Kim, or those who
have improved Kim’s method, in the domain of ADR classification and Sarker and Sahu
their collaborators in the domain of ADRs features engineering. However, none of these
methods explored the effect of domain, semantic, and morphological features on CNN.
This is considered in further detail in the next chapter as the part of the discussion of
the proposed method.
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Chapter 4

Proposed Method

This chapter proposes a new approach for text classification that is called Semantic Vec-
tor (SemVec). SemVec uses domain-specific features and CNN-section 1.3.4 describes
why CNN- to improve tweets ADR classification performance. For example, in order
to classify tweets into two categories which are: tweets without drug side effects and
tweets which may contain ADRs, SemVec uses feature engineering to extract features
related to the medical domain. Furthermore, SemVec can be applied to different text
classification problems in different domains as well.

4.1 Introduction

Many text classification approaches rely on feature engineering [19]. Feature engineering
process is often guided by domain knowledge. In the medical domain, for example, terms
related to diseases such as ADR, symptoms, and medications are manually defined by
experts [19].

SemVec is a new approach that utilizes domain-specific features to improve CNN
networks ADR classification performance. In this approach, SemVec proposes a new
word representation using domain-specific features instead of using word2vec [47] or
GloVe [55] word embedding representation. Moreover, SemVec proposes a new CNN
network model for text classification that best fit the proposed word representation.

4.2 New Word Representation

As shown in figure 4.1, SemVec represents each word in each sentence as a row vector
of features. For example, the word He is represented as a vector of feature values:

x = f11 ⊕ f12 ⊕ f13 ⊕ f14 ⊕ f15 ⊕ f16 f17 ⊕ f18 ⊕ f19 ⊕ f110 ⊕ f111 ⊕ f112 ⊕ f113

Here ⊕ is concatenation operation so x ∈ R1×13. It is worth noting that each feature
can be represented by one or more dimensions in the resulting word vector. Moreover,
the sentence is represented as a matrix of words X features. In order to have a unified
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Figure 4.1: Features Layer.

number of matrix rows, we get the max number of words and zero pad any matrix that
has a smaller number of words. So, each matrix has a length of 32 rows-max number
of sentence words in all corpus-.

4.3 Domain Features Identification & Importance

SemVec utilizes domain specific features to improve ADR classification performance.
Moreover, as SemVec is a dynamic and pluggable method, it can be applied to other
domains other than ADR domain by using that domain specific features. In order to
apply it to new domains, a set of the new domain features need to be used. Besides the
new domain features, some of the features proposed in this thesis 4.6 can also be used.

Feature engineering process is often guided by domain knowledge. All unique terms
present in a text corpus can be considered as features [19]. In the medical domain,
for example, terms related to diseases such as ADR, drug names, symptoms, and med-
ications can be considered as domain-features. In sentiment analysis tasks, language
features such as good words, bad words, and emotion words can be also considered as
domain-features. Moreover, emotion icons in social media text can also be considered
as a domain feature in sentiment analysis as they express users’ emotions and feelings.

Features importance can be measured by multiple methods. The first one is to check
if this feature already exists in this corpus and how it is distributed among classes.
Does this feature split the dataset into the desired classes? Or it is equally found in all
classes? A feature that only exists in the desired class instances can be considered as
a high-quality feature. The empirical method can be used also to measure the effect of
each feature. The leave-one-out technique, where researchers remove one feature from
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the generated matrix, can help measure the effect of a single feature on classification
performance although it can be not precise but can give an indication of feature effect.

4.4 Preprocessing

The first step before performing any feature extraction is to perform standard prepro-
cessing. We use lowercasing, tokenization and stemming or part of speech tagging based
on the feature type. Stop words are not removed from the sentences to have the whole
sentence represented as a matrix. Porter stemmer is used for stemming words [56].
NLTK python library is used for part of speech tagging and tokenization 1. In this the-
sis, some special social media text preprocessing were performed. In particular, Twitter
user names were removed by removing any word starting with at (@) char, remove
hashtags and URLs to other websites.

4.5 Features Categorization

In this thesis, SemVec was applied to a twitter ADR dataset and an additional medical
reports domain dataset. A set of features related to the medical domain was extracted
which can be classified into six categories. This section lists these categories with a
list of included features. Features will be described in more details in the next section.
Features categories are as follows:

• Sentiment/Opinion Features: this category indicate how positive, negative,
and neutral the words are[10]. We used 4 sentiment features in this thesis. These
features can be applied to other datasets-for sentiment analysis tasks-. This cat-
egory includes the following features:

– Opinion Lexicon Negative Words(F1)

– Opinion Lexicon Positive Words(F2)

– SentiWordNet v3.0 Lexicon Word Positive Score(F3)

– SentiWordNet v3.0 Lexicon Word Negative Score(F4)

• Subjectivity Features: this category includes any word express an emotion,
evaluation, opinion, stance, and speculation [75]. This feature can be applied to
other datasets. This category includes the following feature:

– Subjectivity Lexicon (F5)

• Domain Specific Features: represents the features that are related to a specific
domain. In this thesis, we use one feature from the medical domain. This category
includes the following feature:

– ADR Lexicon (F6)

1http://www.nltk.org/
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• Polarity Features: these feature set tries to capture when there is an in-
crease/decrease in a good/bad thing. This category includes the following fea-
tures:

– More Good Lexicon (F7)

– More Bad Lexicon (F8)

– Less Good Lexicon (F9)

– Less Bad Lexicon (F10)

• Word Complexity Features: these features are based on text statistics such
as word length and word order. This category includes the following features:

– Word Length (F11)

– Word Order (F12)

• Other Features: this represents other features that may be created using unsu-
pervised learning algorithm or any other type of algorithm. This category includes
the following features:

– Word Clusters (F13)

4.6 Features Extraction

SemVec represents each word with a vector of features. Based on the problem domain,
additional features can be added or removed. The following list shows these features
and how they are represented in SemVec:

• Opinion Lexicon Negative Word (F1): this feature represents a list of nega-
tive English language opinion words. This list contains also a list of ADR mention
words. Hu and Liu [27] proposed a list of negative opinion words that can be used
in sentiment analysis. The list contains 4817 negative words. Table 4.1 shows
a sample of Opinion Lexicon Negative Words. The following steps show how to
extract this feature:

– Every word in the sentence is first stemmed using Porter stemming algo-
rithm [56].

– Then,this word is matched against the stemmed list of negative opinion
words.

– If the word exists in this NEGATIVE list of words we set its assigned value
to W otherwise, it is set to 0. W is a positive integer that represents this
feature weight.

• Opinion Lexicon Positive Word (F2): this feature represents a list of positive
English language opinion word. Hu and Liu [27] proposed a list of positive opinion
words that can be used in sentiment analysis. Table 4.1 shows a sample of Opinion
Lexicon Positive Words. The following steps show how to extract this feature:
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Feature Samples

Opinion Lexicon Negative Word

abnormal*
annoying
aggressive

sue
suicidal*
zombie
ache*
addict*
allergic*

Opinion Lexicon Positive Word

abundance
adequate
awesome

fascinating

ADR Lexicon

infection vascular*
fecal fat increased*

luteinizing hormone decreased*
ulcer gastrojenunal*

high feeling*

More Words

enhance
augment
increase
amplify

Less Words

drop
fewer
slump

fall
down

Good Words

beneficial
improve

advantage
resolve

Bad Words

complication
risk

adverse*
chronic*
bleeding*
morbidity

Word Cluster2

000110 who’ve 1987
0001110 sshe 43

0001110 ser-ueberwacher 43
0001110 shhe 47

0001110 testasterisk 47

Table 4.1: Features Samples. (* denotes an ADR domain specific words/sentences)
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– Every word in the sentence is first stemmed using Porter stemming algo-
rithm [56].

– Then,this word is matched against the stemmed list of positive opinion words.

– If the word exists in this NEGATIVE list of words we set its assigned value
to W otherwise, it is set to 0. W is a positive integer that represents this
feature weight.

• SentiWordNet Lexicon Positive Word(F3): this feature represents a positive
English language sentiment word. Baccianella et al. [10] proposed the SentiWord-
Net v 3.0 which contains 118,000 English words associated with positive sentiment
score between 0 and 1. Table 4.2 shows a sample of SentiWordNet Lexicon. The
following steps show how to extract this feature:

– Every word in the sentence is tagged by part of speech tagger.

– Then,this word is matched against the SentiWordNet list by part of speech
tag and text matching.

– If the word exists in SentiWordNet, SemVec sets its value is calculated by
the following equation:

x = W ∗ SentiWordNetpositivescore

W is a positive integer that represents this feature weight.

– If the word does not exist in SentiWordNet, SemVec sets its value to 0.

Pos Score Neg Score SynsetTerms Gloss

0.25 0 parturient giving birth; ”a parturient heifer”
0.75 0 direct lacking compromising or mitigating elements
0.5 0.125 living (informal) absolute; ”she is a living doll”

0.125 0.5 superabundant most excessively abundant
0.375 0.25 unabused not physically abused; treated properly

Table 4.2: SentiWordNet Lexicon Sample

• SentiWordNet Lexicon Negative Word (F4): this feature represents a neg-
ative English language sentiment word. Baccianella et al. [10] proposed the Sen-
tiWordNet v 3.0 which contains 118,000 English words associated with negative
sentiment score between 0 and 1. Table 4.2 shows a sample of SentiWordNet
Lexicon.The following steps show how to extract this feature:

– Every word in the sentence is tagged by part of speech tagger.

– Then,this word is matched against the SentiWordNet list by part of speech
tag and text matching.
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Type Word Prior Polarity POS

weaksubj abandon negative verb
strongsubj aberration negative noun
weaksubj abrupt negative adj

strongsubj aggrieved negative adj

Table 4.3: Subjectivity Lexicon Sample

– If the word exists in SentiWordNet, SemVec sets its value by the following
equation:

x = W ∗ SentiWordNetnegativescore

W is a positive integer that represents this feature weight.

– If the word does not exist in SentiWordNet, SemVec sets its value to 0.

• Subjectivity(F5): this feature represents the English language subjectivity value
of words. Wilson et al.[75] have proposed a list of words with there subjectivity
strength (weak and strong) and their polarity (negative, positive and neutral).
Table 4.3 shows a sample of Subjectivity Lexicon. The following steps show how
to extract this feature:

– Every word in the subjectivity list is read and given a score according to
strength and polarity. If it is strong (encoded to 1) or weak (encoded to 0.5)
and its polarity can be positive (encoded to 1) or negative (encoded to -1) or
neutral (encoded to 0). The final score for each word is calculated as follows:

subjectivityscore = type ∗ polarityscore

– If the word exists in subjectivity list , SemVec sets its value by the following
equation:

x = W ∗ subjectivityscore

W is a positive integer that represents this feature weight.

– If the word does not exist in subjectivity list, SemVec sets its value to 0.

• ADR Lexicon (F6): this feature represents a drug side effect(ADR). It incor-
porates ADR domain knowledge to the classifier by performing pattern matching
with ADR lexicon. Sarker et al. [66] have built this ADR lexicon. It includes a
total of 13,699 ADR mentions from different resources. Table 4.1 shows a sample
of ADR Lexicon. The following steps show how to extract this feature:

– Every word in the sentence is tagged by part of speech tagger.

– For each sentence, we create word-level 1-gram, 2-gram, 3-gram, and 4-gram.

– Then, resulting word-level n-gram are matched against the ADR lexicon and
counter of how many matches per sentence is saved.
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– If the word-level n-gram sentence exists in ADR lexicon, SemVec calculates
its value by the following equation:

x = W ∗ count(ADRinsentence)

W is a positive integer that represents this feature weight.

Each word in the matching sentence will receive the value calculated by the
above equation. Otherwise, it is set to 0.

• More Good (F7), More Bad (F8), Less Good(F9), Less Bad(F10): Niu
et al. [50] have proposed these four polarity features. More Good feature indicates
more positive information in the sentence. This represents how a change happens:
for example, reducing headache is considered as a positive outcome; on the other
hand, increasing headache, is considered as a negative outcome. These features try
to find out when there is an increase/decrease in a good/bad thing. A collection of
good, bad, more and less words were used which was created by Sarker et al. [64].
In order to extract these features, a window of four words on each side of each
feature word. If a Good word was found in this window, then a more-good feature
is activated. Similar process were followed to activate other features. Table 4.1
shows a sample of negative, positive, less, and more words.

– Every word in the sentence is tagged by part of speech tagger.

– For each word we define a max boundary and min boundary of words. Min
and Max boundaries are windows of words of size 4.

– Then, if a more good, more bad, less good, less bad word occurs within the
min and max boundary this word is given a score of W1 for more good, W2
for more bad, W3 for less good and W4 for less bad. Otherwise, it is set to
0. W1, W2, W3, and W4 are positive integers that represent each feature
weight

• Word Length (F11): this feature represents each word number of characters.
for example: word: 4, amazing: 7, do: 2 ,etc. This feature defines how complex
each word is and how complex the sentence is. The following equation shows how
to calculate this feature:

x = W ∗ length(word)

W is a positive integer that represents this feature weight.

• Word Order (F12): this feature represents the order number of this word in
the sentence. For example in the following sentence:

I like this movie very much.

– order(I)= 1

– order(like)= 2

– order(this)= 3
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– order(movie)= 4

– order(very)= 5

– order(much)= 6

The following equation shows how to calculate this feature:

x = W ∗ order(word)

W is a positive integer that represents this feature weight.

• Word Clusters (F13): this feature is proposed by Brown et al. [13] in this feature
hierarchical word clusters are generated from a huge set of unlabeled tweets via
Brown clustering [13]. This produces a base set of 1,000 clusters which includes
clusters for happinesses and sadness words and emotions, etc. Table 4.1 shows
a sample of word clusters. The following equation shows how to calculate this
feature:

x = wordclusterkey(word)

4.7 Model Architecture

Regular Neural Nets receive a single vector input, and then a series of hidden layers
transform it to generate the final class scores. Each hidden layer is composed of a set of
neurons. Neurons in one layer function independently of other neurons in other layers
and each neuron in any layer is connected to all neurons of the previous layer [7]. The
last layer is the output layer which represents the class scores.

CNN uses convolving filters that are applied to local features [40]. The first CNN
for text classification approach was proposed by Kim [35].

SemVec proposes a new CNN model for text classification. The new model improves
classification results in terms of accuracy and precision. In this thesis, we compared the
following network models:

4.7.1 Kim Model

Kim [35] has proposed a CNN network model for text classification. Figure 4.2 shows
Kim CNN model architecture. The proposed model takes complete tweet as an input
and classifies it into either positive or negative class. More information about this model
can be found at [35].

4.7.2 SemVec Model

In this thesis, we propose a new CNN model for text classification. Figure 4.5 outlines
the main layers in the proposed model. It only contains a single convolution layer
with one filter of size 2(by experiment). All the properties of SemVec model was found
through grid search experiments 5.3.6. The following describe the differences between
our proposed model and Kim model:
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Figure 4.2: Kim [35] CNN model architecture. [80]

• In this model, each word is represented with 13 discrete features instead of using
word embeddings.

• SemVec model uses a single convolution layer instead of three convolution layers
used in Kim’s model, one max pooling layer instead of three max pooling layers.

• SemVec model uses a filter size of 2(by experiment) instead of whole word embed-
ding size in Kim model.

• SemVec model uses two fully connected layer of 128 and 1 respectively while Kim
model does not use them.

• SemVec model uses Sigmoid activation function in the last layer instead of Softmax
layer used by Kim model.

Subsequent sections describe each layer in SemVec model in details:
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Figure 4.3: Kim [35] CNN architecture weights.

4.7.2.1 Feature Input Layer

In this model, each word is represented with 13 discrete features as described in section
4.2.

4.7.2.2 Convolution Layer

In Kim [35] model, the convolution layer uses three filter sizes: 3,5 and 7 each one of
them has 2 filters as described in section 2.4.2. On the other hand, SemVec model uses
one filter size of 2 found by grid search as in section 5.3.6.

4.7.2.3 Max Pooling Layer

In this layer, we apply a max operation to find the most useful feature in the generated
feature map from the previous layer. SemVec max pooling window size is equal to 2*2
found by grid search as in section 5.3.6.
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Figure 4.4: SemVec CNN architecture weights.

4.7.2.4 Dense Layers

SemVec model has 2 fully connected layers. The first layer includes 128 neurons and
the second one has one neuron. A non linearity Relu activation function connects the
layers together found by grid search as in section 5.3.6.

4.7.2.5 Sigmoid Layer

In the final layer, a sigmoid receives the feature vector from the previous layer and uses
it to perform binary classification. The sigmoid equation is:

S(x) =
1

1 + e−x

found by grid search as in section 5.3.6.

4.8 Model Weights Comparison

As shown in figure 4.4 and 4.3, SemVec uses only 68,449 weights compared to 2,768,051
for Kim [35] model. So, Kim model uses 40x more weights than SemVec to train CNN
network for text classification task. This clearly impact network training time.
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Figure 4.5: SemVec model architecture.

4.9 SemVec Use Case

SemVec can be used in post-market drug monitoring. In this phase, patients may share
ADRs on social media sites which they do not report for governmental drug monitoring
systems such as AERS. It is vital to capture these ADRs as some of them can be critical
and may cause a drug withdrawal. This thesis proposes a system that can capture ADRs
from a live Twitter stream as shown in figure 4.6.

The system listens for live twitter steam filtered by a list of predefined drugs. The
second step is to use trained SemVec model to classify filtered posts into two categories:
contains ADR and do not contain ADR. After this step, a human annotator can verify
classification results of SemVec. The new set of annotated tweets can be used to retrain
SemVec model and improve classification performance.

Based on previously classified tweets we can classify drugs into black box and normal
drugs. In order to classify drugs into black box and normal, we followed Patki et al. [54]
inference step that is based on the assumption that drugs in blackbox category have
more ADRs posts than normal drugs. Patki et al. [54] have proposed a probalistic model
that can be used to classify a drug belonging to one of the two categories. The following
equations [54] shows the probability estimates for a drug to be in blackbox or normal
category.
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Figure 4.6: SemVec use case

P (y = N |x1x2...xn) =

∑n
i P (y = noADR|xi)

n

P (y = B|x1x2...xn) =

∑n
i P (y = ADR|xi)

n

Where N stands for normal class, B stands for black box class, x1 to xn are the
comments related to that drug, and n is the total number of comments belonging to
that drug.

As the number of comments without ADRs are usually much higher than comments
with ADRs, this results in higher sums for noADRs compared to ADRs. As a result,
the system will always be biased towards normal class. To solve, we can scale the ADR
probability by a scaling factor which is the number of tweets with no ADRs to the
number of tweets with ADRs [54] as shown in the following equations:

α =
number of no ADR tweets

number of ADR tweets

P (y = B|x1x2...xn) = α ∗
∑n

i P (y = ADR|xi)
n
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Using this approach, if for a drug the probability of being black box drug * α
¿ probability of being normal,we categorize the drug as a black box; otherwise, we
categorize it as normal. Finally, drugs classified as a black box can be then reported to
government health department for further investigation.
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Chapter 5

Evaluation and Results

This thesis takes an empirical approach to evaluate the performance of our proposed
method by comparing it with the state of the art methods on different datasets. Due
to ADRs criticality, precision is selected as the most significant metric. Also, other
classification metrics are reported. This chapter represents datasets and evaluation
methodology which was used in experiments. Moreover, it discusses the results of our
proposed approach compared to other methods in ADRs classification.

5.1 Evaluation Methodology

This section represents thesis methodology that was followed to evaluate proposed
method.

5.1.1 Datasets Selection

In order to evaluate the performance of SemVec, we run a group of experiments on three
different datasets. The three datasets are publicly available and consist of manually
annotated text segments. To evaluate SemVec ADR classification performance we used
Twitter ADR corpus and in addition ADE corpus. Both datasets are annotated for
ADRs presence or absence. Moreover, each dataset has different post types: the Twitter
dataset contains a collection of tweets whereas the ADE dataset contains a collection
of medical case reports which helps in evaluating SemVec performance on different post
types. Furthermore, CADEC [34] dataset was excluded because it is mainly designed
and annotated for ADR entity extraction and not for classification.

SemVec aims to allow classification of texts in different domains. To evaluate SemVec
performance on different domains we apply it to SemEval 2015 dataset. SemEval 2015
dataset contains tweets expressing a sentiment about popular topics without ADRs.
The following is a brief description of the datasets.
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Figure 5.1: Sample tweets from Twitter dataset. [66]

5.1.1.1 Twitter ADR Corpus

The first dataset has been sourced from Twitter[66]. A total of 74 drugs from IMS
Health’s Top 100 drugs by volume for 2013 were used. The tweets collected using the
generic and brand names of drugs, including phonetic misspellings. The dataset is
composed of a total of 7,574 instances of which 6,672 do not contain ADRs, and only
902 include ADR mentions. So this dataset is highly imbalanced which reflects the
real world, where the number of tweets with ADRs are so small compared to non-ADR
tweets,- only 11.9% of the tweets have new ADRs. Figure 5.1, shows sample tweets
from twitter dataset.

5.1.1.2 ADE Corpus

ADE corpus[23] consists of a set of annotated sentences from medical case reports. The
dataset is composed of a total of 23516 instances of which 6,821 (29.0%) includes ADR
mentions, while the rest do not. Although this data set is of different origin we can
use it to evaluate our method performance. Figure 5.2, shows sample posts from ADE
dataset.

5.1.1.3 SemEval-2015 Task 10 Dataset

SemEval is the most popular Twitter sentiment analysis shared task. The dataset for
this task was gathered from tweets expressing a sentiment about popular topics(general
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English language domain). The 2015 dataset is a collection of previous 2 years shared
task dataset and 2015 dataset. The dataset was collected for popular topics from the
same time period. Testing messages have different topics than training. Tweets were
skewed towards the neutral class. Moreover, the tweets that do not contain sentiment-
bearing words using SentiWordNet 3 [10] were removed, to reduce class imbalance.
Sentiment-bearing word is any word in SentiWordNet [10] that has a positive or negative
score [59].

Corpus Pos. Neg. Obj./ Neu Total

Twitter2013-train 3,662 1,466 4,600 9,728
Twitter2013-dev 575 340 739 1,654
Twitter2013-test 1,572 601 1,640 3,813

SMS2013-test 492 394 1,207 2,093
Twitter2014-test 982 202 669 1,853

Twitter2014-sarcasm 33 40 13 86
LiveJournal2014-test 427 304 411 1,142

Twitter2015-test 1040 365 987 2392

Table 5.1: Data set statistics for SemEval 2015[59]

5.2 Evaluation Methodology

To evaluate the performance of our approach, we used evaluation metrics to evaluate
the quality of our model predictions namely: accuracy, recall, precision, and f-score.

Our approach aims to achieve better precision results in comparison to the state
of the art approaches. We evaluated our approach on Twitter ADR dataset as well as
other datasets.

In order to correctly evaluate our approach and find out more about its limitations
and strengths, a set of experiments were conducted as follows:

1. SemVec proposes a new approach using domain-specific features along with a new
CNN network model to improve model precision. To validate this, experiments
were conducted to measure SemVec model precision and compare it to other ap-
proaches. The results of the these experiments are presented in section 5.3.1.

2. To validate that domain specific features improve model precision and not any ran-
dom numbers, experiments were conducted to compare SemVec with untrained

Figure 5.2: Sample posts from ADE dataset.
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embeddings on SemVec network model. Untrained embeddings are randomly
initialized word vectors. The results of the these experiments are presented in
section 5.3.1 and 5.3.2.

3. We propose a new CNN network model for text classification which uses a single
convolution layer and a set of optimized parameters -found by experiments as
shown in 5.3.6- to SemVec word representation. To validate that this model
improves classification performance, experiments were conducted to compare its
classification results with Kim Model. The results of the these experiments are
presented in section 5.3.3.

4. Adding more domain-specific features can improve classification precision. To
validate this, experiments were conducted to measure the changes in classification
performance when adding more features. The results of the these experiments are
presented in section 5.3.7.

5. Each feature has a different contribution than other features. To evaluate features
contribution, a set of leave-one-out experiments were conducted to measure the
contribution of each feature(one feature is removed from SemVec every time). The
results of the these experiments are presented in section 5.3.8.

6. In order to determine the best hyper-parameters, several experiments were con-
ducted to search through a manually specified subset of the hyper-parameter space
measured by cross-validation on the training set. The results of the these experi-
ments are presented in section 5.3.6.

Furthermore, the following additional experiments (outside the scope of this thesis)
were conducted to evaluate SemVec:

1. To validate that SemVec can be applied to different domains, an experiment were
conducted on a general English language domain (SemEval 2015 dataset in this
case). The results of this experiment are presented in section 5.3.5.

2. SemVec should work on different post types. To validate this, an experiment were
conducted to validate that SemVec works on different post types (ADE medical
reports dataset). The results of this experiment are presented in section 5.3.4.

5.2.1 Metrics

To correctly evaluate our model we use multiple classification metrics. This section
defines the metrics that are used in the thesis.

• True Positives(TP): total number of correctly classified posts as positive class[52](i.e:
correctly classified as containing ADRs in Twitter and ADE datasets).

• True Negatives(TN): the number of posts correctly classified as belonging to
the negative class[52](i.e: correctly classified as not containing ADRs in Twitter
and ADE datasets).
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• False Positives(FP): the number of wrongly classified posts as positive class[52](i.e:
wrongly classified as containing ADRs in Twitter and ADE datasets).

• False Negatives(FN): the number of wrongly classified posts as negative class[52](i.e:
wrongly classified as not containing ADRs in Twitter and ADE datasets).

• Accuracy: represents total correctly classified (positives and negatives) divided
by total number of samples samples[52]. Accuracy measures the percentage of cor-
rectly classified classes(Both ADRs and non-ADRs), for which high accuracy in-
dicates that either positive(ADR) or negative(non-ADR)(in imbalanced datasets)
or both classes were correctly classified.

Accuracy =
TP + TN

TP + FP + TN + FN

• Precision: also known as confidence in data mining. It represents the proportion
of predicted positive instances that are really positives[52]. Precision measures
the percentage of correctly identified ADRs, for which high precision indicates
that from the identified/extracted ADRs, high percentage correctly identified as
ADRs.

Precision =
TP

TP + FP

• Recall: or sensitivity, it represents the proportion of true predicted positive ob-
jects from the total number of positive objects in the set [52]. Recall measures the
proportion of correctly identified ADRs from the total number of ADR instances
in the whole dataset.

Recall =
TP

TP + FN

• F-measure: represents a weighted average of both precision and recall [52].

F −measure = 2 ∗ 1
1

recall + 1
precision

• Epoch: represents one cycle of training on the entire training set samples [15].

• Mean: represents sum of all values divided by the number of those values [18].

mean =

∑
xi
n

• Standard Deviation: represents the amount of variation between set data val-
ues [12].

s =

√∑N
i=1(xi − x̄)2

N − 1
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5.2.2 Experiment Design

All the experiments were conducted on Google cloud virtual machines. Table 5.2 lists
virtual machine specifications. Experiments implementation were done using Python
programming language version 2.7 along with Keras deep learning library with Tensorflow[6]
deep as backend.

Environment Variable Specs

Operating System Debian GNU/Linux 9 (stretch)
CPU 4 vCPUs
RAM 3.6 GB

Table 5.2: Virtual machine specifications

5.2.3 Training, Learning and Test Sets

A common way to experiment the model classification performance is to randomly split
the dataset into a training set, and test set. The dataset was divided into two parts:
80% training and 20% testing set [66]. We used Stratified k-fold which is a variation of
k-fold which returns stratified folds. This ensures that each set contains approximately
the same proportions of instances for each ADR and non-ADR class as the complete set.
In this experiment, 10 stratified Fold (splits) were used. With SemEval dataset 5.3.5
we used three different datasets: training, validation and testing sets. In both cases,
the classification model is built based on training set only. The classes of validation and
test set instances are hidden from the model in training step.

5.2.4 Experiment Settings

The list of all the major model parameters are shown in table 5.3. A set of grid search
experiments were conducted to find the optimal values for each parameter as shown in
section 5.3.6. The following explains each setting:

• BATCH SIZE: represents the number of instances that are used in each step of
training.

• DROPOUT KEEP PROB: dropout is a method used in CNN to regularize
the network. This setting controls the fraction of neurons that are enabled during
training time.

• EMBEDDING DIM: represents the dimensions of the vector space model.

• FILTER SIZES: represents how many words in the sentence matrix to slide over
in each filter.

• NUM FILTERS: represents the number of filters per each filter size.
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Parameter Name Parameter Value

BATCH SIZE 128
DROPOUT KEEP PROB 0.7
EMBEDDING DIM 32
FILTER SIZES 2
NUM FILTERS 32

Table 5.3: Experiment settings.

5.2.5 Baselines

To compare SemVec results with other methods, 10-stratified-fold cross-validation was
used. SemVec results are compared to the state of the art methods in PSB 2016 social
media mining shared task on binary classification of adverse drug reactions (ADRs) and
other methods. Below is a list of these methods:

• Convolutional Neural Network (CNN): by Huynh et al. [28] .

• Recurrent Convolutional Neural Network (RCNN): new architecture pro-
posed by Huynh et al. [28] .

• Convolutional Recurrent Neural Network (CRNN): new architecture pro-
posed by Huynh et al. [28].

• Convolutional Neural Network with Attention (CNNA): new architecture
proposed by Huynh et al. [28].

• Term-matching based on an ADR lexicon(TM): proposed by Zhang et
al. [81] with Huynh et al. [28] implementation.

• Maximum-Entropy classifier with n-grams and TFIDF weightings(ME-
TFIDF): proposed by Zhang et al. [81] with Huynh et al. [28] implementation.

• Maximum-Entropy classifier with n-grams and NB log-count ratio(ME-
NBLCR): proposed by Zhang et al. [81] with Huynh et al. [28] implementation.

• Maximum-Entropy classifier with mean word embeddings(ME-WE):
proposed by Zhang et al. [81] with Huynh et al. [28] implementation.

• Multi Corpus method: proposed by Sarker et. al. [66]. We report the best
Multi Corpus method results on single ADE data set.

These methods were described in more details in chapter 3. In addition to the above-
mentioned methods, we compare the results with:

• Word2vec: In this experiment, CNN was used with 150 embedding dimension
-x ∈ R1×150-. Word2vec embeddings are real-valued vectors of configurable dimen-
sion. Nikfarjam et al. [49] generated word2vec word representation was used. The
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similarity between words was modeled by utilizing an unlabeled twitter dataset
about drugs with more than one million tweets. Word representation is learned
by training a neural network language model.

• Untrained Embeddings: In this experiment, CNN without pre-trained word
embedding, instead CNN model learned word embedding from scratch.

• SemVec: In this experiment, we used CNN with our generated features as input.
SemVec used 13 generated features.

• Word2vec + generated features : In this experiment, CNN with pre-trained
word2vec embeddings plus 12 generated features as input.

5.3 Results and Analysis

In this section, SemVec is compared to other classification approaches on Twitter ADR
dataset (the key evaluation for SemVec) as described in section 5.3.1 and 5.3.2. Ad-
ditionally, this thesis added extra evaluation datasets including ADE dataset (section
5.3.4) and SemEval 2015 dataset (section 5.1.1.3). Table 5.4 (key evaluation results)
shows the results of the comparison between SemVec and other methods on Twitter
ADR data set. Table 5.5 shows the results of the comparison between SemVec and
other methods on ADE data set. Table 5.6 shows the comparison between SemVec and
other methods on SemEval 2015 dataset. Table 5.8 shows leave one out classification
results showing how metrics are affected as one feature is removed from the set.

5.3.1 Twitter ADR Dataset Results

This section shows the experimental results of SemVec on Twitter ADR dataset com-
pared to other state of the art methods. Full results are shown in appendix B.

As described in chapter 3, Zhang et al. [81] have achieved the second best approach in
PSB task and their approach uses classifiers with engineered features. We compare our
results with Huynh et al. [28] implementation of Zhang et al. [81] methods. Moreover,
we compare SemVec with Huynh et al [28] and Sarker et al. [66] methods. Section 5.2.5
contains a list of all methods.

Table 5.4 shows comparison between SemVec and a set of state of the art meth-
ods(described in section 5.2.5). These results are for instances containing ADR which
this thesis is interested in. In this experiment, SemVec used 13 features including pre-
processing step where we clean tweet from URLs and hashtags.

Compared to other methods, SemVec achieves the best accuracy- only three methods
reported accuracy two of them use CNN as the Twitter dataset is highly imbalanced
and the max accuracy score if all tweets are set to no-ADR is 88.1% - and precision
scores due to the use of domain specific features, which are tailored to this domain and
post type. Features such as ADR lexicon, word clusters, and opinion words have clear
effect on improving precision as shown in section 5.3.8 and 5.3.7. Apart from that, the
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Method Accuracy ADR Precision ADR Recall ADR F-score

TM [28] N/A 13 89 23
ME-TFIDF [28] N/A 33 70 45
ME-NBLCR [28] N/A 79 14 23

ME-WE [28] N/A 27 73 40
CNN [28] N/A 47 57 51

CRNN [28] N/A 49 55 51
RCNN [28] N/A 43 59 49
CNNA [28] N/A 40 66 49

Multi-corpus [66] 86.2 N/A N/A 53.8
SemVec 92.5 79.4 49.8 60.93

Untrained Embeddings 90.85 60.91 63.12 61.89
Majority Vote [41] N/A 70.21 59.64 64.50

CNN+GoogleNews [8] 90.4 N/A N/A 54.20

Table 5.4: ADR classification results on the Twitter datasets.

new CNN network architecture that is proposed by this thesis is clearly affecting the
model classification performance.

ME-NBLCR achieves second highest ADR precision score as it assigns a high weight
to one feature, which is ADR class feature. While ME-NBLCR achieves a high precision
score, it has the lowest ADR Recall due to the same reason [81]. Moreover, ME-NBLCR
is a fine tuned method to a set of predefined ADRs and does not take into account
different features in tweets such as if this tweet expresses a user experience or a news.
Due to that Zhang et al. approach uses an ensemble of ME-NBLCR, ME-TFIDF,
ME-WE, and TM which results in lower precision and better recall.

Majority Vote method [41] achieves the best F-score results on Twitter ADR dataset.
Compared to SemVec, it achieves lower precision and higher recall. Majority Vote
achieves such high recall scores since it uses several semi-supervised CNN models built
from different types of unlabeled data. In the second phase, CNN is trained with
annotated ADE data. The use of several semi-supervised CNN models followed by a
linear classifier which determines the final results of theses models clearly improved
this method F-score.Untrained embeddings achieves the second best F-score because it
achieves a higher recall compared to SemVec.

SemVec achieves the third best F-score because of low recall scores. The lower recall
scores are due to the fact that this data set is highly imbalanced (see section 5.1.1.1).
The second reason for low recall scores is related to a set of issues such as the use
of non-standard terms, short posts, spelling errors, etc. These issues with solutions
are described in more details in section 5.3.9. On the other hand, techniques like
oversampling proposed by Hensman and Masko [45] can be used to fix dataset imbalance
and improve classifier performance.
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Figure 5.3: Accuracy comparison

Figure 5.4: ADR F-score comparison
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Figure 5.5: ADR Precision comparison

Figure 5.6: ADR Recall comparison
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5.3.2 Comparison between SemVec, Word2Vec and untrained embed-
dings on Twitter ADR Dataset

This section compares the performance of SemVec, Word2Vec and Untrained embed-
dings on the Twitter ADR dataset based on several experiments conducted by this
thesis using SemVec network model 4.7.2. Figure 5.3 shows accuracy scores of the
above-mentioned methods on the Twitter dataset. In the first epoch, SemVec achieves
a lower accuracy score compared to untrained embedding and word2vec + generated fea-
tures methods. After that, SemVec accuracy score keeps improving until it achieves its
maximum accuracy score. After each epoch, CNN optimizes model weights to achieve
a better score. Interestingly, SemVec was able within 38 epochs to achieve the best
accuracy results.

Compared to other methods, SemVec achieves the best Accuracy and Precision
scores due to the use of domain specific features. Features and the new CNN network
architecture that is proposed by this thesis as discussed in section 5.3.1. In addition,
domain specific features are clearly improving convergence time and adding more quality
features can decrease convergence time and increase model performance as discussed in
section 5.3.7.

Untrained embeddings input was able to achieve better accuracy results than both
word2vec and word2vec + generated features methods. This is maybe due to the use of
SemVec network model. Also, CNN backpropagation algorithm is clearly has improved
untrained embedding accuracy.

It is also clear that domain specific features improve word2vec accuracy and precision
scores compared to word2vec without domain features.

Figure 5.4 shows f-score scores of the above-mentioned input methods on the Twitter
dataset. Untrained embeddings achieve the best accuracy scores and it is clear that it
converges faster than any other method. SemVec was able to achieve better f-score
results than both word2vec and word2vec + generated features. Moreover, after 100
epoch SemVec achieves a very close scores to Untrained embeddings scores. F-score
is clearly related to both model precision and recall. Untrained embeddings achieves
higher recall values from the first epochs with lower precision scores. In other words,
it classifies more posts as ADR while they are not which improves recall but affects
precision. SemVec on the other hand, classify less posts as ADRs in the first epochs
which affect recall and f-score while maintaining higher precision scores.

The use of domain specific features clearly improves generated features + word2vec
approach f-score results as it improves both precision and recall by improving the fea-
tures representing each word. Moreover, word2vec scores are lower than other ap-
proaches because word2vec word vector is considered as one unit. However, the filter
in SemVec network model operates on every 2 dimensions in the word vector to extract
features, which results in features without any meaning.

Figure 5.5 shows precision scores of the above-mentioned input methods on the
Twitter dataset. SemVec achieves the best precision scores from the 25 epoch. After
25 steps we notice a huge gap between SemVec and other methods precision scores.
Both untrained embeddings and word2vec + generated features SemVec achieve nearly
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equal precision scores. Word2vec, on the other hand, achieved the worst precision scores
in these experiments. It is clear also that domain specific features improve word2vec
precision results because it improves the word representation which improves the clas-
sifier performance. Moreover, word2vec scores are lower than other approaches because
word2vec word vector is considered as one unit. However, the filter in SemVec net-
work model operates on each 2 dimensions in the word vector to extract features, which
results in features without any meaning.

Figure 5.6 shows recall scores of the above-mentioned input methods on Twit-
ter dataset. Untrained embeddings achieve better recall scores across all the epochs.
SemVec achieves the second best recall scores in this experiment. Word2vec + gener-
ated features achieve better recall scores than word2vec. Word2vec on the other hand,
achieved the worst precision scores in these experiments. It is clear also that generated
features improve word2vec recall results because it improves the word representation
which improves the classifier performance. Moreover, word2vec scores are lower than
other approaches which is because word2vec word vector is considered as one unit. How-
ever, the filter in SemVec network model operates on every 2 dimensions in the word
vector to extract features, which results in features without any meaning.

The lower SemVec recall scores are due to the fact that this data set is highly
imbalanced (see section 5.1.1.1). The second reason for low recall scores is related to
a set of issues such as the use of non-standard terms, short posts, spelling errors, etc.
These issues with solutions are described in more details in section 5.3.9.

5.3.3 Comparison between SemVec and untrained embeddings on Twit-
ter ADR Dataset on Kim Model

This section shows the experimental results of two different methods for generating input
layer using one convolution layer CNN. We note that our method SemVec achieves the
best precision results.

Figure 5.7 shows accuracy scores of the above-mentioned methods on the Twitter
dataset. SemVec achieves the best accuracy scores after 300 epochs. Untrained em-
beddings input was able to achieve better accuracy results in the first 300 epochs then
accuracy starts to decrease.

Compared to SemVec model results in the previous section, we notice that Kim
model is clearly affecting accuracy scores for both untrained embeddings and SemVec.
Also, it seems like untrained embeddings model starts to overfit after epoch 180 which
does not happen with SemVec model. While SemVec continues to achieve better results
but with slow convergence time compared to SemVec model in the previous section.

SemVec achieves better accuracy and precision scores as it uses domain specific
features compared to randomly initialized numbers of untrained embeddings. Moreover,
the drop in performance when using Kim model could be because it convolves over the
whole word vector that represents each word. This results in representing the whole word
vector with a limited number of features which causes a loss in some features compared
to SemVec network model which has a bigger representation of features because of
smaller filter sizes.
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Figure 5.7: Kim Model Accuracy

Figure 5.8: Kim Model ADR F-score
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Figure 5.9: ADR Precision comparison

Figure 5.8 shows f-score scores of the above-mentioned input methods on the Twitter
dataset. Untrained embeddings achieves the better accuracy scores and it is clear that
it converges faster than SemVec.

SemVec low f-score scores are related to low recall scores. Low recall scores are
related to dataset imbalance as described in previous sections and common errors such
as spelling errors, short posts, acronyms, etc. as described in section 5.3.9.

Figure 5.9 shows precision scores of the above-mentioned input methods on the
Twitter dataset. SemVec achieves the best precision scores after 200 epochs. After 200
epochs, SemVec precision is clearly better than untrained embeddings.

Figure 5.10 shows recall scores of the above-mentioned input methods on the Twitter
dataset. Untrained embeddings achieve the best recall scores across all the epochs.

5.3.4 ADE Dataset Results

This section shows additional experimental results (outside the scope of this thesis)
of SemVec on ADE dataset to evaluate its performance on other type datasets. ADE
dataset contains sampling from MEDLINE case reports and so it is written by profes-
sionals. In addition, it does not contain data from social media. Compared to Twitter
dataset the content of text segments are more likely to be different and post length is
clearly bigger. ADE dataset also contains approximately twice more posts compared to
the Twitter dataset [66].

Table 5.5 shows a comparison between SemVec and methods mentioned in sec-
tion 5.2.5. These results, for instances containing ADR which we are interested in. In
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Figure 5.10: ADR Recall comparison

Method ADR Precision ADR Recall ADR F-score

TM [28] 30 99 46
ME-TFIDF [28] 74 86 80
ME-NBLCR [28] 91 79 84

ME-WE [28] 48 70 57
CNN [28] 85 89 87

CRNN [28] 82 86 84
RCNN [28] 81 89 83
CNNA [28] 82 84 83

Multi-corpus [66] N/A N/A 81.2
SemVec 85.14 68.9 76.1

Table 5.5: ADE data set results comparison
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Team Twitter 2015 Twitter 2015 sarcasm

7 IOA 62.62 65.77
4 INESC-ID 64.17 64.91
14 NLP 60.93 63.62
30 Sentibase 56.67 62.96
17 UIR-PKU 60.03 62.75
10 TwitterHawk 61.99 61.24
5 Splusplus 63.73 60.99
25 SWATAC 58.43 59.43
9 CLaC-SentiPipe 62 58.55
22 GTI 58.95 58.18
19 ECNU 59.72 57.74
41 whu-iss 24.8 57.73
21 SWASH 59.26 57.02
26 SWATCMW 57.6 56.69
27 WarwickDCS 57.32 56.58
16 Gradiant-Analytics 60.62 56.45
13 KLUEless 61.2 56.19
29 DIEGOLab 56.72 55.56
2 unitn 64.59 55.01
8 Swiss-Chocolate 62.61 54.66
20 CIS-positiv 59.57 54.3
1 Webis 64.84 53.59
37 SemVec 47.96 52.8
18 IIIT-H 59.83 52.67
11 SWATCS65 61.89 52.64
15 ZWJYYC 60.77 52.4
6 wxiaoac 63 52.22
24 elirf 58.58 50.66
35 RoseMerry 51.18 49.62
28 SeNTU 57.06 49.53
36 Frisbee 49.19 48.26
33 RGUSentimentMiners123 53.73 48.21
12 UNIBA 61.55 48.16
3 lsislif 64.27 46
23 iitpsemeval 58.8 43.91
32 UPF-taln 55.59 41.63
39 UDLAP2014 42.1 40.59
34 IHS-RD 52.65 36.02
38 UMDuluth-CS8761 47.77 34.4
40 SHELLFBK 32.45 25.73
31 Whu Nlp 56.39 22.25

Table 5.6: SemEval 2015 competition results with SemVec [59]

53



this experiment, we used 13 features same as Twitter ADR dataset with no additional
preprocessing steps. Compared to other methods, SemVec achieves the second best
Precision scores the same as CNN method proposed by Huynh et al. [28].

ME-NBLCR achieves the highest ADR precision scores as it assigns a high weight
to one feature, which is ADR class feature [81]. While SemVec achieves the second
best precision score because we use the same preprocessing, same domain features, and
same model hyper-parameters as Twitter ADR dataset although this dataset has a dif-
ferent nature. To improve SemVec precision and recall scores on this dataset additional
features, different preprocessing steps and different model hyper-parameters should be
used. CNN methods achieve high precision and recall scores as ADRs are composed of
short text fragments; convolutions are enough to capture necessary ADR classification
information [28]. This may suggest that removing some extra features from SemVec
could potentially improve classification performance.

Moreover, SemVec F-score results lower than other methods due to lower recall
scores for SemVec. The lower recall scores are due to the fact that this data set is
highly imbalanced. Techniques like oversampling proposed by Hensman and Masko [45]
can be used to fix dataset imbalance and improve classifier performance.

In this experiment, SemVec achieves accuracy score of 87.2% compared to 88.2%
achieved by Sarker et al. [66]. Other above-mentioned methods do not report their
accuracy score in their papers.

5.3.5 SemEval 2015 Dataset Results

This section shows the results of applying SemVec to SemEval 2015 Task 10 Subtask B
message polarity classification dataset. In this subtask, 40 teams were competing, both
newcomers and returning. All competing systems managed to beat the baseline except
one system [59].

Table 5.6 show the test results of the teams competing in this subtask including
SemEval results. The scores reported in this table are calculated as follows:

Score =
FscorePositive+ FscoreNegative

2

SemVec achieves the position 23 from 41 in Twitter 2015 sarcasm test and position
37 in Twitter 2015 dataset. In this experiment, SemVec used the following additional
features:

• NRC Emotion Lexicon Features: this experiment uses eight basic emotions
(surprise, sadness, trust, anger, fear, anticipation, joy, and disgust) and two sen-
timents (negative and positive)scores extracted from the NRC Emotion Lexicon.
NRC Emotion Lexicon is a list of English words with their association with the
above-mentioned emotions and sentiment. In this lexicon, each word has a score
for each one of those emotions and scores [48].

• Valence, Arousal, and Dominance Features: SemVec use the three features
from Warriner et al. [74] [74] Lexicon.
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In this experiment, SemVec uses the same configuration as previous experiments
except adding more features and changing epochs number and dropout. Other teams
1 used a set of different techniques -that can be used with SemVec- to improve their
classifier performance such as:

• Use additional training set such as Sanders and SentiStrength twitter datasets,
which are not provided by the task organizers.

• Use extra preprocessing steps to expand acronyms and emotions using special
dictionaries.

• Use extra lexicons such AFFIN, Liu Bing Lexicon and others which SemVec did
not use.

• Use additional features such as ngrams, trigrams, and chargrams.

Moreover, taking into consideration that some teams also rejoin this competition
for the third time. It is clear that some teams optimized their methods more than
SemVec for this special task. In addition to that, we believe that adding additional
preprocessing with extra features can clearly improve SemVec score further.

5.3.6 Grid Search

To determine the best hyperparameters for our model, several experiments were per-
formed. Table 5.7 shows part of these experiments. The effect of changing the optimizer,
hidden dimensions, batch size, epochs, dropout, filters, kernel size and pool size on model
accuracy and loss were studied. The settings that maximize model performance were
used in later experiments. For a complete list of experiments can be found at appendix
B.1.

5.3.7 Adding features Effect

Several classifications experiments were performed to investigate the real effect of adding
features on model classification performance. However, we do not study the best combi-
nation of features as this is outside the scope of this thesis. So, we start adding features
one by one to the model and track the changes in classification performance. As shown
in figure 5.11, the results show that every feature added improves model accuracy. It is
clear that some features have a bigger impact on the accuracy than others. It can be
observed that adding the fourth feature causes a big jump in model accuracy. There is
also a small jump after adding the fifth feature but adding the sixth, seventh, eighth
and ninth feature has a small effect. There is also another jump when adding the tenth,
eleventh, twelfth and thirteenth feature. It is also worth noting that the biggest jump
in model performance when adding a new feature happens in the first 100 steps.

As shown in figure 5.12, the same as accuracy, it is clear that some features have
a bigger impact on the model f-score than others. It can be observed that adding

1https://github.com/xiaowh7/SemEval-2015-Task-10
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Accuracy Loss Epochs Optimizer Hidden Dimensions Batch Size

89.81 0.239381 300 Adam 128 128
89.78 0.239441 300 Adam 128 64
89.78 0.238454 300 Adam 256 64
89.74 0.237184 200 Adam 256 128
89.7 0.238626 300 Adam 256 128
89.55 0.239334 300 Adam 128 256
89.53 0.236153 200 Adam 256 256
89.5 0.235099 300 Adam 256 256
89.45 0.238668 200 Adam 128 64
89.45 0.236627 200 Adam 128 128
89.44 0.231163 200 Adam 256 64
89.32 0.232866 200 Adam 64 128
89.27 0.236982 300 Adam 64 256
89.25 0.239289 300 Adam 64 64
89.25 0.239787 100 Adam 256 64
89.17 0.237499 200 Adam 128 256
89.08 0.239252 100 Adam 256 128
89.05 0.240378 100 Adam 256 256
88.95 0.23616 300 Adam 64 128
88.88 0.237877 200 Adam 64 64
88.88 0.236926 200 Adam 64 256
88.61 0.254083 100 Adam 128 256
88.53 0.252873 100 Adam 128 64
88.44 0.237259 300 RMSprop 128 256
88.13 0.298497 300 RMSprop 128 64

88 0.253993 100 Adam 128 128
87.9 0.236279 200 RMSprop 128 256
87.83 0.24536 300 RMSprop 128 256
87.83 0.261661 100 Adam 64 128
87.81 0.236815 200 RMSprop 128 256
87.72 0.26464 100 Adam 64 64
87.39 0.28228 100 Adam 64 256
87.35 0.293081 100 RMSprop 64 256
87.3 0.276044 300 RMSprop 64 256
87.22 0.293348 300 RMSprop 64 64
87.21 0.294215 300 RMSprop 128 64
87.2 0.284198 100 RMSprop 128 256
87.16 0.283954 100 RMSprop 128 256
87.06 0.293875 100 RMSprop 64 64
87.03 0.293208 200 RMSprop 128 64
87.01 0.2932 200 RMSprop 64 64

Table 5.7: Grid search results
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Figure 5.11: Adding features effect on model accuracy

Figure 5.12: Adding features effect on model ADR F-score
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Figure 5.13: Adding features effect on model ADR precision

Figure 5.14: Adding features effect on model ADR recall
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the fourth feature (Positive SentiWordNet feature) causes a big jump in model f-score.
There is also a small jump after adding the fifth (Negative SentiWordNet) and seventh
(Less Bad Word) features. The same effect of adding these features has the same effect
on model recall. Positive, Negative SentiWordNet, and Less Bad Word features are
language related features which as expected most of the posts contain some of these
words which makes them more relevant to be returned. There is also another jump
when adding the tenth(Word Length) feature. It is also worth noting that the biggest
jump in model performance when adding a new feature happens in the first 100 steps.

Moreover, adding more features has the same effect on model recall as f-score and
accuracy as shown in figure 5.14. It can be observed that adding the fourth feature
(Positive SentiWordNet feature) causes a big jump in model Recall. There is also a
small jump after adding the fifth (Negative SentiWordNet), and seventh (Less Bad
Word). There is also another jump when adding the tenth feature (Word Length). It
is also worth noting that the biggest jump in model recall when adding a new feature
happens in the first 100 steps. Moreover, It can be observed that Word Length feature
has a significant impact on ADR F-score. After investigating word length in both
classes, it is clear that average word length for positive ADR is 4 while it is 5 for
negative ADR instances. This may suggest that users tend to use shorter terms when
discussing ADRs. The effect of adding features on model precision is different than
other metrics. As shown in figure 5.13, the biggest jump happens after adding the
fourth feature (Positive SentiWordNet feature). On the other hand, other jumps are
small and cannot be observed and we can see that the model with 10 features is able to
achieve a higher precision after the hundredth epoch.

Interestingly, adding more features make model converge faster. This means that
model can achieve higher scores in less number of epochs. This is clear in accuracy,
f-score, and recall performance metrics.

5.3.8 Contribution of features

Several leave-one-out classifications experiments were performed to investigate the real
contribution of each feature on model classification performance. As shown in fig-
ure 5.15, the results show that every feature improves ADR F-scores and that ADR
F-score drops when any feature is removed. Moreover, It can be observed that remov-
ing Word Length feature has a significant impact on ADR F-score. After investigating
word length in both classes, it is clear that average word length for positive ADR is
4 while it is 5 for negative ADR instances. This may suggest that users tend to use
shorter terms when discussing ADRs. Similarly, both ADR lexicon and word cluster [53]
features have a clear impact on improving ADR F-score. ADR feature is important for
twitter ADR dataset specifically because both positive and negative dataset classes have
a set of tweets with ADR mentions. Based on that ADR feature improves recall signif-
icantly but on the other hand, it lowers precision. On the other hand, the removal of
word clusters feature has clearly lowered model ADR precision and ADR recall. This is
due to the fact that hierarchical word clusters were obtained via Brown clustering [13]
on a huge set of unlabeled tweets which produces a base set of 1,000 clusters with in-
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Figure 5.15: Leave-one-out classification scores

cludes for example clusters for happiness and sadness words and emotions which has a
clear impact on our model performance.

Importantly, it is clear that the best score is achieved by the combination of all the
features and the removal of any feature clearly lowers the model performance. This sup-
ports our initial hypothesis that adding high-quality features improves the performance
of CNN. The complete results of these experiments are presented in Table 5.8.

5.3.9 Error Analysis

This section shows the leading causes of SemVec classification errors. Furthermore,
it presents possible techniques that can be applied to improve SemVec classification
performance. The common causes of classification errors are as follows:

• Non-standard terms/use of English: many ADRs are written using user’s
language and not in standard ADR terminology. Those instances are usually
unique to specific posts, and they are not repeated[66]. A solution to this problem
is to have a larger dataset with much larger ADR instances which can solve this
problem.

• Short posts: some instances in twitter datasets contains very few terms. This
makes it hard to generate a rich feature set for these instances[66]. A solution
to this problem is to expand terms with their synonyms and acronym or emotion
equivalent words. SemVec did not employ this solution so implementing it may
improve SemVec performance.
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Features Accuracy ADR F-score ADR Precision ADR Recall

Mean (%) SD (±) Mean (%) SD (±) Mean (%) SD (±) Mean (%) SD (±)

All 92.38 0.43 60.48 2.41 77.93 4.99 49.68 3.65
Word Cluster 91.84 0.72 58.84 3.98 72.72 5.71 49.78 5.34
Word Order 92.31 0.58 60.16 3.27 77.56 6.22 49.56 4.67
Word Length 91.74 0.75 56.87 5.1 73.51 4.73 46.67 6.23
Subjectivity 92.03 0.24 59.06 1.99 74.76 3.01 49.03 3.54

Pos WordNet 92.43 0.47 60.33 3.18 78.95 4.88 49.13 4.43
Pos Opinion 92.24 0.8 60.06 3.37 77.04 7.96 49.56 3.73

Neg WordNet 92.18 0.59 59.65 3.36 75.98 4.28 49.24 3.94
Neg Opinion 92.09 0.54 59.09 3.64 75.68 4.89 48.81 5.17
More Good 92.12 0.43 59.86 2.73 74.7 3.36 50.1 3.65
More Bad 92.14 0.44 59.27 3.26 76.39 4.89 48.92 5.56
Less Good 92.46 0.53 60.4 3.08 79.22 5.04 49.03 3.91
Less Bad 92.31 0.5 60.23 3.3 77.06 4.71 49.78 4.85

ADR 92.32 0.83 58.09 4.92 80.94 5.8 45.39 4.57

Table 5.8: Leave-one-out classification scores showing how accuracies, ADR F-scores,
ADR precisions and ADR recalls are affected after removing one feature.

• Spelling errors: often social media posts contains misspellings[66]. We can
reduce this problem by using a set of medical and nonmedical dictionaries to fix
spelling errors.

• Sarcastic statements/ambiguous statements: in some posts, the users are
very ambiguous and may use positive words to represent an ADR [66].

• Emotion icons: it is common in social media posts to contain emotion icons.
Emotion icons can express user feelings that are not included in his written post.
SemVec strip emotion icons from posts. Parsing emotion icons may improve
SemVec classification performance.

• Acronyms: often users in twitter posts use a set of acronyms to reduce their tweet
size. SemVec ignores acronyms. However, expanding acronyms may improve the
feature representation of post and improve SemVec accuracy, precision, and recall.

• ADRs: some of the negative instances has ADR text in it. This is maybe due to
wrong annotation or the negative nature of the post.

The following describe the effects of these errors on our model:

• These errors are the main causes of SemVec classification errors.

• SemVec does not handle all these errors (i.e: spelling errors, scarcastic statements,
emotion icons, and acronyms). It currently strip some of these information such
as emotion icons. Handling these features correctly could clearly improve classifi-
cation performance even further.
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Usually, users use some or all of the above-mentioned issues in their posts. This
makes classifying these posts very hard to classify even for human annotator.

5.3.10 Summary of results and discussions

This thesis proposes a new CNN network model for text classification. The proposed
model is shown in section 4.7.2. Compared to Kim’s [35] model for text classification
this model uses a filter size of 2*2(by grid search) instead of full depth of the embedding
dimension and random filter sizes. The use of smaller filter sizes increases the number
of features extracted from each sentence which improves classification performance.
Additionally, this model uses a fully connected layer of 128 neurons connected with the
output. The proposed model clearly improves SemVec accuracy, precision, recall and
as a result f-score. This is due to the fact that each feature in SemVec is independent,
unlike word2vec which represents each word as one related feature.

Compared to other methods, SemVec achieves the best Accuracy and Precision
scores as shown in table 5.4 due to the use of domain specific features, which are
tailored to this domain and post type. Features such as ADR lexicon, word clusters,
and opinion words have a clear effect on improving precision as shown in section 5.3.8
and 5.3.7. Apart from that, the new CNN network architecture that is proposed by this
thesis is clearly affecting the model classification performance.

To evaluate the effect of SemVec proposed CNN network model, experiments were
conducted to compare its classification results with Kim model using the same features
input layer as shown in section 5.3.3. Figures 5.7, 5.9,5.8, and 5.10 show classification
performance results for SemVec and Untrained embedding methods using Kim model.
While SemVec achieves better accuracy and precision results, there is a drop in both
methods performance when using Kim model. In addition, the convergence time for
both methods become bigger and Untrained embeddings seems to overfit after 200
epochs.

The drop in performance when using Kim model could be because it convolved over
the whole features that represent each word. This results in representing the whole
word vector with a limited number of features which causes a loss in some features. On
the other hand, SemVec network model has a bigger representation of features because
of smaller filter sizes.

SemVec improves model convergence time. As shown in figure 5.3 and figure 5.5,
SemVec was able to achieve the best results under 50 epochs. This is also related to the
fact that SemVec uses a set of semantic features which improves network learning and
model accuracy results.

SemVec does not achieve the best F-score results in Twitter and ADE datasets
due to low recall scores. Recall scores are due to the fact that both data sets are
highly imbalanced for example: in Twitter dataset number of ADR instances is 902
compared to 6,672 non-ADR instances. To improve SemVec recall scores we suggest
using techniques like oversampling proposed by Hensman and Masko [45] which can fix
dataset imbalance and improve classifier performance. Moreover, issues such as short
posts, spelling errors and acronyms has an impact on recall and precision scores as
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described in section 5.3.9.
Every feature we experiment has an effect on SemVec performance as shown in

section 5.3.8. Although some features have smaller impact than other features, the best
score was achieved by the combination of all features as shown in table 5.8. We notice
that language features (i.e:negative and positive words), domain specific features (i.e:
ADR lexicon), and word length has more impact compared to other features on Twitter
ADR dataset. We can also conclude that adding more high-quality features can improve
SemVec performance further.

In the Twitter dataset, ADR lexicon feature, language features(i.e:negative and pos-
itive words), and word length has bigger impact on both recall and precision compared
to other features as shown in table 5.8.

Finally, adding more domain specific features to SemVec improves convergence time
and has a clear impact on all performance metrics as discussed in section 5.3.7. Fig-
ures 5.11, 5.12, 5.13 and 5.14 shows how adding more features clearly affect different
model metrics and how some features such as Sentiment features, language, and domain
features have more impact than other features.
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Chapter 6

Conclusion

This section concludes our thesis. We represent a brief literature review, our model
architecture, results, limitations and future work.

6.1 Introduction

This thesis has conducted a literature review of research done on ADR detection in
tweets. The work can be categorized into three categories: text mining based methods,
machine learning based methods and deep learning based methods.

Recently, several researchers have been using deep learning for various NLP tasks
from relation extraction to sentiment analysis and POS tagging. Due to promising
results that deep learning can achieve, this thesis investigates the use of deep learning
in ADR classification.

Chapter 4 proposed a new approach for text classification which uses a set of en-
gineered features as an input to CNN. The proposed method achieves better accuracy
and precision results compared to other state of the art methods on Twitter ADR data
set.

6.2 Contributions

The main contributions of this thesis, the development of new word representation
layer that can be used as the input layer for CNN (Chapter 4). These contributions are
summarized as follows:

• SemVec which is a new word representation layer that can be used as the input
layer for CNN. SemVec extracts semantic and domain-specific features from posts
and represents each word in this sentence as a vector of features. In SemVec, we
combine a set of domain-specific features such as ADR lexicon and syntactic and
semantic features. Some of these features are generic and can be used for other
data sets without the need for any modifications. Domain-specific features can be
added or removed based on the dataset and its domain.
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• This thesis proposes a new CNN model for text classification. The proposed
model is shown in section 4.7.2. Compared to Kim’s [35] model, this model uses
a filter size of 2*2 instead of full depth of the embedding dimension and random
filter sizes. Additionally, this model uses a fully connected layer of 128 neurons
connected with the output. The proposed model clearly improves SemVec accu-
racy, precision, recall, and as a result f-score. This is due to the fact that each
feature in SemVec is independent, unlike word2vec which represents each word as
one related feature.

• SemVec improves Twitter dataset classification accuracy and precision and achieves
the best precision score in ADE data set. Moreover, it is able to improve model
learning and minimize model convergence time.

6.3 Discussion

SemVec is evaluated by comparing it to the different state of the art methods on Twitter
ADR data set as shown in chapter 5. Our work was implemented in python using Keras
library and Tensorflow as backend. Results show that SemVec achieves better accuracy
and precision score on the Twitter dataset and the best precision score on ADE dataset.

• SemVec achieves the best accuracy and precision results on Twitter data set.

• SemVec improves network learning and network convergence time. SemVec achieves
the best results under 50 epochs.

• SemVec did not achieve the best F-score results in Twitter and ADE datasets due
to low recall scores.

• Adding more quality features to SemVec improves convergence time and has a
clear impact on all performance metrics. Although some features have a smaller
impact than other features, the best score was achieved by the combination of all
features.

• Domain-specific features have a bigger impact on model performance than other
features. In SemVec ADR lexicon feature has a clear impact on both recall and
precision.

6.4 Limitations and Assumptions

Three different data sets were selected to evaluate the performance of SemVec. Although
these datasets are different in many characteristics such as the number of instances, post
length and post nature, it is impossible to cover all the different data set types. This
section covers some of the assumptions and limitations of our work:
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• The maximum number of features that are used in the experiments is 13 in both
Twitter and ADE datasets and 28 features in SemEval dataset, thus we could not
ascertain how SemVec would behave after adding more features.

• SemVec was applied to two different Twitter datasets and ADE data set which is
a medical reporting data set. Similarly, we could not ascertain how SemVec would
behave on different type datasets such as news posts or any other type.

• This thesis assumed all the datasets do not have missing data in Twitter ADR
dataset.

• This thesis applied the same 13 features to the 3 datasets. However, we could not
ascertain how these features would behave on different type data sets.

• This thesis applied SemVec to one multi-class dataset (SemEval 2015), thus we
could not be certain how it will behave on different multi-class data sets.

6.5 Future work

This section represents the main areas for future works:

• This thesis applied SemVec to three datasets. As a future work, we need to expand
the number of data sets and investigate how SemVec behaves on different datasets.

• This thesis applied SemVec to one data set with three classes. As a future work,
we need to investigate the performance of SemVec on other multi-class data sets.

• SemVec approach achieves higher precision scores on twitter dataset. However,
we notice that recall is relatively lower than other methods. As a future work, we
need to investigate different techniques to improve SemVec recall.
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Appendix A

Twitter Dataset Results

A.1 Accuracy

Epoch Untrained embedding SemVec 150 word2vec 162 word2vec + generated features

10 90.78305671 88.61548969 78.01424732 89.32859479
20 90.36317102 89.21683767 76.16857388 89.4965385
30 90.54517899 90.18197276 76.7694466 89.32838356
40 90.18158551 91.03517471 75.23146168 88.6846844
50 90.34926519 91.34284563 76.12602908 89.34278226
60 90.20948519 91.56655348 76.21057301 89.60831322
70 90.33560579 91.6084118 75.86095577 89.3567585
80 90.46116313 91.4687198 75.4411933 88.68540609
90 90.54517899 91.72039774 75.46919858 89.07693445
100 90.34944121 91.84609589 76.12685638 88.83905673
110 90.34954683 91.76216804 76.01513447 89.28657806
120 90.13956878 91.90215928 76.25299459 89.14672764
130 90.30744208 92.22378883 75.91694874 88.78315177
140 90.30733647 92.02776942 76.08476924 89.07689925
150 90.58731894 92.09784424 76.04273491 89.23063789
160 90.51734972 92.1817721 76.91012433 88.76924593
170 90.50344389 92.12583193 76.11244009 88.95104267
180 90.55929605 92.13989618 78.01452895 88.99312982
190 90.40548699 92.06987416 76.82609086 89.18883239
200 90.34944121 92.05593313 76.44860915 88.96496611
210 90.32141832 92.08376239 78.05724978 89.11872235
220 90.67103556 92.19573073 76.60273505 89.18862116
230 90.81095639 92.16772545 77.74927963 89.16068628
240 90.41951604 92.22384164 78.08451577 89.30044868
250 90.08385744 92.26566474 77.74885717 89.0066836
260 90.02795248 92.15390763 77.79127876 89.11882797
270 90.12576856 92.083868 77.98661168 89.06272938
280 90.08391025 92.13972016 78.3087517 89.00693003
290 90.36368149 92.30757586 77.79106753 88.96505412
300 90.33579942 92.30761107 77.58100147 89.1049749468



A.2 F-score

Epoch 162 word2vec + generated features 150 word2vec SemVec Untrained embedding

0 0 0 3.757063228 0
10 36.08691485 11.50731278 16.90394119 60.07636713
20 38.62057143 12.92864034 32.37864634 59.83946655
30 39.00712496 12.57923325 42.90805756 59.74720184
40 38.95654905 14.11638402 52.64106121 59.71113185
50 39.03137199 12.70971267 55.6742273 60.31011433
60 40.11155476 12.88498807 57.15466265 60.36063605
70 42.91171807 13.16662549 58.05095869 60.28143651
80 38.94264165 12.67273784 57.73531679 60.61361665
90 41.7759147 12.55092777 58.14846881 60.90412211
100 37.91313511 12.27616682 58.640437 60.39396933
110 40.42979126 12.31500679 59.07941198 60.62670414
120 40.20111606 11.94296054 59.81472234 60.29784208
130 40.75125632 12.22741255 60.29531299 60.52802856
140 40.27509065 12.92518783 59.57294506 60.13176056
150 41.8863586 12.35721666 59.87270696 60.77726906
160 40.32585582 11.45431748 59.88396333 61.13903691
170 40.54944591 12.57003829 60.21688524 60.99389965
180 41.29300491 11.71891053 59.75713421 60.99102602
190 40.9368632 11.25320974 59.46256256 60.7454668
200 39.96839276 12.08553473 59.31928832 60.992843
210 39.98573979 11.1804115 59.48188129 61.0664052
220 41.48768636 11.23332971 59.46679546 61.28312672
230 41.44480659 11.46333485 59.62202805 61.65449687
240 42.03404725 11.37867481 59.68018748 60.66445493
250 40.49174897 10.79006439 59.40571842 60.07031645
260 40.44064809 10.74159137 59.55086772 59.8591561
270 41.91549087 11.11977699 58.77961406 59.5365819
280 38.51637008 10.78534828 59.26842343 59.82901372
290 39.46672432 10.57429663 59.6793328 60.58226827
300 41.5301324 11.12727709 59.88703549 60.27787266
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A.3 Precision

Epoch 162 word2vec + generated features 150 word2vec SemVec Untrained embedding

0 0 0 40.30864198 0
10 62.28786539 10.90296026 61.60909023 61.77311411
20 61.74620803 11.41918775 62.85070485 59.58431011
30 60.90332332 11.26064106 68.25833453 60.27755169
40 57.73267858 11.96963676 70.40033653 58.59828608
50 60.94530841 11.17777189 70.82102425 59.17865671
60 62.48453457 11.44115232 71.39786751 58.27878902
70 59.61967108 11.53236776 70.9657358 58.6454329
80 53.51371516 10.96794347 70.59401104 59.43678822
90 56.66283033 10.87582533 72.15446393 59.77282467
100 56.88216433 10.8991704 72.98347404 58.74518309
110 59.90823456 10.88036403 71.50872801 58.73342921
120 57.08736259 10.72203892 72.15081272 58.21111404
130 53.94071472 10.74527481 76.03685187 58.53205822
140 56.13232928 11.41215914 73.86984357 58.68172847
150 57.64322441 10.89148156 74.51784002 59.89194486
160 54.19320884 10.4125849 75.72167199 59.33750384
170 55.37223492 11.06399534 74.34056824 59.25762009
180 55.78605931 11.10099773 75.454648 59.45421271
190 57.16872814 10.29735173 74.63983504 58.93263684
200 55.50686974 10.77524727 74.42640885 58.36006234
210 56.65240985 10.7646473 75.01470218 58.18699744
220 57.3481256 10.14333916 76.73963016 59.98183533
230 57.55993842 10.81053104 75.92381947 60.60589472
240 58.15852345 10.82471908 77.32000148 58.73550179
250 55.85849432 10.21549924 77.99154508 57.22802211
260 56.76048631 10.20633586 76.05203898 56.99164638
270 56.01381607 10.64483954 75.959091 57.5839
280 55.89158018 10.54198535 75.92732579 57.25184899
290 57.74664587 10.08658383 78.08181101 58.42051165
299 56.39280585 10.44935526 77.92575619 58.457856
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A.4 Recall

Epoch 162 word2vec + generated features 150 word2vec SemVec Untrained embedding

0 0 0 2.022166298 0
10 26.39111314 12.2524721 9.874424871 58.96692849
20 28.52385673 15.21899387 22.12308396 60.87216249
30 29.13775134 14.3902997 31.51834058 59.67487735
40 31.52469559 17.35682147 42.55954651 61.57884034
50 29.60420956 14.86946796 46.24164315 62.0605506
60 29.85205521 14.98767127 47.90919952 63.37095503
70 34.48104934 15.57741681 49.44965556 62.29949922
80 31.28447597 15.22407789 49.56658786 62.18765093
90 33.63964514 15.22280688 48.97938433 62.42024454
100 29.36144793 14.26955439 49.21960396 62.42151554
110 31.0290043 14.6178093 50.5325504 63.0138031
120 31.63273088 13.90604743 51.35361855 63.25529373
130 33.04608658 14.3902997 50.29105976 63.01253209
140 31.73949516 15.21899387 50.04829813 61.9461603
150 33.18462594 14.50723201 50.29105976 62.06436361
160 32.57708635 13.07481126 49.69241719 63.36460002
170 32.10554412 14.62797733 50.76133099 63.12565139
180 33.18081293 12.59818501 49.8093495 62.76977046
190 31.98861181 12.596914 49.57040087 63.00490607
200 31.51579857 13.6645568 49.68860418 63.59592262
210 31.13958159 11.88261013 49.45473957 64.55171713
220 32.81095096 12.94898193 48.7404357 62.77231246
230 32.69401866 12.35923638 49.33399426 62.88543176
240 33.04481558 12.24230407 49.09631663 62.88670276
250 31.96954676 11.65001652 48.26380945 63.36332901
260 31.62002084 11.5254582 49.21451994 63.24639671
270 33.75657744 11.88642314 48.14433514 61.81524696
280 29.72495488 11.40344188 48.73789369 62.88543176
290 30.89681995 11.40471288 48.50021607 63.12183838
300 33.27868019 12.00716846 48.86499403 62.52192481
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Appendix B

Grid Search Results

B.1 Hyper Parameters Results

Accuracy SD Activation Pool Size Filters Dropout Filter Size

86.57 15.45 sigmoid 2 64 0.7 2
86.49 15.39 sigmoid 2 32 0.7 2
85.84 14.93 sigmoid 2 32 0.7 4
85.81 14.95 sigmoid 3 32 0.7 3
85.67 14.81 sigmoid 4 64 0.7 2
85.58 14.75 sigmoid 5 64 0.7 3
85.55 14.73 sigmoid 5 64 0.7 2
85.53 14.71 sigmoid 3 64 0.7 2
85.53 14.73 sigmoid 3 64 0.7 3
85.52 14.71 sigmoid 5 32 0.7 2
85.51 14.7 sigmoid 2 64 0.7 4
85.47 14.67 sigmoid 2 64 0.5 2
85.46 14.67 sigmoid 2 64 0.7 3
85.33 14.57 sigmoid 2 32 0.5 5
85.33 14.57 sigmoid 2 64 0.5 3
85.31 14.55 sigmoid 2 64 0.5 4
85.3 14.56 sigmoid 2 32 0.5 2
85.27 14.53 sigmoid 2 32 0.7 3
85.26 14.55 sigmoid 2 32 0.5 4
85.19 14.49 sigmoid 4 32 0.7 2
85.09 14.41 sigmoid 2 32 0.5 3
85.06 14.4 sigmoid 4 64 0.7 3
85.04 14.37 sigmoid 4 32 0.7 4
84.98 14.33 sigmoid 4 64 0.7 4
84.94 14.3 sigmoid 3 32 0.7 2
84.85 14.23 sigmoid 4 32 0.7 3
84.8 14.24 sigmoid 3 64 0.7 4
84.77 14.2 sigmoid 2 64 0.7 5
84.75 14.16 sigmoid 5 32 0.7 5
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Accuracy SD Activation Pool Size Filters Dropout Filter Size

84.72 14.14 sigmoid 5 32 0.7 3
84.68 14.11 sigmoid 5 32 0.7 4
84.64 14.09 sigmoid 5 64 0.7 5
84.6 14.07 sigmoid 2 64 0.5 5
84.36 13.89 sigmoid 4 64 0.7 5
84.31 13.85 sigmoid 5 64 0.7 4
84.25 13.81 sigmoid 3 32 0.7 5
84.23 13.79 sigmoid 3 64 0.7 5
84.14 13.73 sigmoid 3 32 0.7 4
84.07 13.68 sigmoid 2 32 0.7 5

84 13.64 sigmoid 4 32 0.7 5
11.76 16.63 softmax 2 32 0.5 2
11.76 16.63 softmax 2 32 0.5 3
11.76 16.63 softmax 2 32 0.5 4
11.76 16.63 softmax 2 32 0.5 5
11.76 16.63 softmax 2 64 0.5 2
11.76 16.63 softmax 2 64 0.5 3
11.76 16.63 softmax 2 64 0.5 4
11.76 16.63 softmax 2 64 0.5 5
11.76 16.63 softmax 4 32 0.7 2
11.76 16.63 softmax 4 32 0.7 3
11.76 16.63 softmax 4 32 0.7 4
11.76 16.63 softmax 4 32 0.7 5
11.76 16.63 softmax 4 64 0.7 2
11.76 16.63 softmax 4 64 0.7 3
11.76 16.63 softmax 4 64 0.7 4
11.76 16.63 softmax 4 64 0.7 5
11.76 16.63 softmax 3 32 0.7 2
11.76 16.63 softmax 3 32 0.7 3
11.76 16.63 softmax 3 32 0.7 4
11.76 16.63 softmax 3 32 0.7 5
11.76 16.63 softmax 3 64 0.7 2
11.76 16.63 softmax 3 64 0.7 3
11.76 16.63 softmax 3 64 0.7 4
11.76 16.63 softmax 3 64 0.7 5
11.76 16.63 softmax 5 32 0.7 2
11.76 16.63 softmax 5 32 0.7 3
11.76 16.63 softmax 5 32 0.7 4
11.76 16.63 softmax 5 32 0.7 5
11.76 16.63 softmax 5 64 0.7 2
11.76 16.63 softmax 5 64 0.7 3
11.76 16.63 softmax 5 64 0.7 4
11.76 16.63 softmax 5 64 0.7 5
11.76 16.63 softmax 2 32 0.7 2
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Accuracy SD Activation Pool Size Filters Dropout Filter Size

11.76 16.63 softmax 2 32 0.7 3
11.76 16.63 softmax 2 32 0.7 4
11.76 16.63 softmax 2 32 0.7 5
11.76 16.63 softmax 2 64 0.7 2
11.76 16.63 softmax 2 64 0.7 3
11.76 16.63 softmax 2 64 0.7 4
11.76 16.63 softmax 2 64 0.7 5
84.77 14.2 sigmoid 2 64 0.7 5
84.75 14.16 sigmoid 5 32 0.7 5
84.72 14.14 sigmoid 5 32 0.7 3
84.68 14.11 sigmoid 5 32 0.7 4
84.64 14.09 sigmoid 5 64 0.7 5
84.6 14.07 sigmoid 2 64 0.5 5
84.36 13.89 sigmoid 4 64 0.7 5
84.31 13.85 sigmoid 5 64 0.7 4
84.25 13.81 sigmoid 3 32 0.7 5
84.23 13.79 sigmoid 3 64 0.7 5
84.14 13.73 sigmoid 3 32 0.7 4
84.07 13.68 sigmoid 2 32 0.7 5

84 13.64 sigmoid 4 32 0.7 5
11.76 16.63 softmax 2 32 0.5 2
11.76 16.63 softmax 2 32 0.5 3
11.76 16.63 softmax 2 32 0.5 4
11.76 16.63 softmax 2 32 0.5 5
11.76 16.63 softmax 2 64 0.5 2
11.76 16.63 softmax 2 64 0.5 3
11.76 16.63 softmax 2 64 0.5 4
11.76 16.63 softmax 2 64 0.5 5
11.76 16.63 softmax 4 32 0.7 2
11.76 16.63 softmax 4 32 0.7 3
11.76 16.63 softmax 4 32 0.7 4
11.76 16.63 softmax 4 32 0.7 5
11.76 16.63 softmax 4 64 0.7 2
11.76 16.63 softmax 4 64 0.7 3
11.76 16.63 softmax 4 64 0.7 4
11.76 16.63 softmax 4 64 0.7 5
11.76 16.63 softmax 3 32 0.7 2
11.76 16.63 softmax 3 32 0.7 3
11.76 16.63 softmax 3 32 0.7 4
11.76 16.63 softmax 3 32 0.7 5
11.76 16.63 softmax 3 64 0.7 2
11.76 16.63 softmax 3 64 0.7 3
11.76 16.63 softmax 3 64 0.7 4
11.76 16.63 softmax 3 64 0.7 5
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Accuracy SD Activation Pool Size Filters Dropout Filter Size

11.76 16.63 softmax 5 32 0.7 2
11.76 16.63 softmax 5 32 0.7 3
11.76 16.63 softmax 5 32 0.7 4
11.76 16.63 softmax 5 32 0.7 5
11.76 16.63 softmax 5 64 0.7 2
11.76 16.63 softmax 5 64 0.7 3
11.76 16.63 softmax 5 64 0.7 4
11.76 16.63 softmax 5 64 0.7 5
11.76 16.63 softmax 2 32 0.7 2
11.76 16.63 softmax 2 32 0.7 3
11.76 16.63 softmax 2 32 0.7 4
11.76 16.63 softmax 2 32 0.7 5
11.76 16.63 softmax 2 64 0.7 2
11.76 16.63 softmax 2 64 0.7 3
11.76 16.63 softmax 2 64 0.7 4
11.76 16.63 softmax 2 64 0.7 5
11.76 16.63 softmax 3 32 0.7 4
11.76 16.63 softmax 3 32 0.7 5
11.76 16.63 softmax 3 64 0.7 2
11.76 16.63 softmax 3 64 0.7 3
11.76 16.63 softmax 3 64 0.7 4
11.76 16.63 softmax 3 64 0.7 5
11.76 16.63 softmax 5 32 0.7 2
11.76 16.63 softmax 5 32 0.7 3
11.76 16.63 softmax 5 32 0.7 4
11.76 16.63 softmax 5 32 0.7 5
11.76 16.63 softmax 5 64 0.7 2
11.76 16.63 softmax 5 64 0.7 3
11.76 16.63 softmax 5 64 0.7 4
11.76 16.63 softmax 5 64 0.7 5
11.76 16.63 softmax 2 32 0.7 2
11.76 16.63 softmax 2 32 0.7 3
11.76 16.63 softmax 2 32 0.7 4
11.76 16.63 softmax 2 32 0.7 5
11.76 16.63 softmax 2 64 0.7 2
11.76 16.63 softmax 2 64 0.7 3
11.76 16.63 softmax 2 64 0.7 4
11.76 16.63 softmax 2 64 0.7 5
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